大数据的关键技术有哪些?
|
是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。那么,大数据的关键技术有哪些呢?今天就跟随小编一起来了解下吧!
1、数据收集 大数据时代,数据的来源极其广泛,数据有不同的类型和格式,同时呈现爆发性增长的态势,这些特性对数据收集技术也提出了更高的要求。数据收集需要从不同的数据源实时的或及时的收集不同类型的数据并发送给存储系统或数据中间件系统进行后续处理。 2、数据预处理 数据的质量对数据的价值大小有直接影响,低质量数据将导致低质量的分析和挖掘结果。广义的数据质量涉及许多因素,如数据的准确性、完整性、一致性、时效性、可信性与可解释性等。 3、数据存储 分布式存储与访问是大数据存储的关键技术,它具有经济、高效、容错好等特点。分布式存储技术与数据存储介质的类型和数据的组织管理形式直接相关。 4、数据处理 分布式数据处理技术一方面与分布式存储形式直接相关,另一方面也与业务数据的温度类型(冷数据、热数据)相关。目前主要的数据处理计算模型包括MapReduce计算模型、DAG计算模型、BSP计算模型等。 |
时间:2021-03-24 16:46 来源: 转发量:次
声明:本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,不为其版权负责。如果您发现网站上有侵犯您的知识产权的作品,请与我们取得联系,我们会及时修改或删除。