三行Python代码,可以让你的数据处理快别人4倍
|
Python是一门非常适合处理数据和自动化完成重复性工作的编程语言,我们在用数据训练机器学习模型之前,通常都需要对数据进行预处理,而Python就非常适合完成这项工作,比如需要重新调整几十万张图像的尺寸,用Python没问题! 你几乎总是能找到一款可以轻松完成数据处理工作的Python库。 然而 虽然Python易于学习,使用方便,但它并非运行速度最快的语言。 默认情况下,Python程序使用一个CPU以单个进程运行。 不过如果你是在最近几年配置的电脑,通常都是四核处理器,也就是有4个CPU。 这就意味着在你苦苦等待Python脚本完成数据处理工作时 你的电脑其实有75%甚至更多的计算资源就在那闲着没事干! 今天就教大家怎样通过并行运行Python函数,充分利用你的电脑的全部处理能力。 得益于Python的 concurrent.futures 模块, 我们只需3行代码 就能将一个普通数据处理脚本变为能并行处理数据的脚本,提速4倍。 普通Python处理数据方法 比方说: 我们有一个全是图像数据的文件夹,想用Python为每张图像创建缩略图。 下面是一个短暂的脚本: 用Python的内置glob函数获取文件夹中所有JPEG图像的列表, 然后用Pillow图像处理库为每张图像保存大小为128像素的缩略图:
![]()
这段脚本沿用了一个简单的模式 你会在数据处理脚本中经常见到这种方法:
首先获得你想处理的文件(或其它数据)的列表 咱们用一个包含1000张JPEG图像的文件夹测试一下这段脚本, 看看运行完要花多长时间:
![]()
运行程序花了8.9秒,但是电脑的真实工作强度怎样呢? 我们再运行一遍程序 看看程序运行时的活动监视器情况:
![]()
电脑有75%的处理资源处于闲置状态!这是什么情况? 这个问题的原因就是我的电脑有4个CPU,但Python只使用了一个。 所以程序只是卯足了劲用其中一个CPU,另外3个却无所事事。 因此我需要一种方法能将工作量分成4个我能并行处理的单独部分。 幸运的是,Python中有个方法很容易能让我们做到! 试试创建多进程 下面是一种可以让我们并行处理数据的方法:
将JPEG文件划分为4小块。运行Python解释器的4个单独实例。 4个Python拷贝程序在4个单独的CPU上运行, 处理的工作量应该能比一个CPU大约高出4倍, 对吧? 最妙的是,Python已经替我们做完了最麻烦的那部分工作。 我们只需告诉它想运行哪个函数以及使用多少实例就行了,剩下的工作它会完成。 整个过程我们只需要改动3行代码。 首先 我们需要导入concurrent.futures库 这个库就内置在Python中:
![]()
接着,我们需要告诉Python启动4个额外的Python实例。 我们通过让Python创建一个Process Pool来完成这一步:
![]()
默认情况下: 它会为你电脑上的每个CPU创建一个Python进程, 所以如果你有4个CPU,就会启动4个Python进程。 最后一步: 让创建的Process Pool用这4个进程在数据列表上执行我们的辅助函数。 完成这一步,我们要将已有的for循环:
![]()
替换为新的调用executor.map():
![]()
该executor.map()函数调用时需要输入辅助函数和待处理的数据列表。 这个函数能帮我完成所有麻烦的工作 包括将列表分为多个子列表、将子列表发送到每个子进程、运行子进程以及合并结果等。 干得漂亮! 这也能为我们返回每个函数调用的结果。 Executor.map()函数会按照和输入数据相同的顺序返回结果。 所以我用了Python的zip()函数作为捷径,一步获取原始文件名和每一步中的匹配结果。 这里是经过这三步改动后的程序代码:
![]()
我们来运行一下这段脚本 看看它是否以更快的速度完成数据处理:
![]()
脚本在2.2秒就处理完了数据!比原来的版本提速4倍! 之所以能更快的处理数据 是因为我们使用了4个CPU而不是1个。 但是 如果你仔细看看,会发现“用户”时间几乎为9秒。 那为何程序处理时间为2.2秒,但不知怎么搞得运行时间还是9秒? 这似乎不太可能啊? 这是 因为“用户”时间是所有CPU时间的总和, 我们最终完成工作的CPU时间总和一样,都是9秒, 但我们使用4个CPU完成的,实际处理数据时间只有2.2秒! 注意: 启用更多Python进程以及给子进程分配数据都会占用时间,因此靠这个方法并不能保证总是能大幅提高速度。 这种方法总能帮我的数据处理脚本提速吗? 如果你有一列数据 并且每个数据都能单独处理时,使用我们这里所说的Process Pools是一个提速的好方法。 下面是一些适合使用并行处理的例子:
从一系列单独的网页服务器日志里抓取统计数据。 但也要记住,Process Pools并不是万能的。 使用Process Pool需要在独立的Python处理进程之间来回传递数据。 如果你要处理的数据不能在处理过程中被有效地传递,这种方法就行不通了。 简而言之,你处理的数据必须是Python知道怎么应对的类型。 同时 也无法按照一个预想的顺序处理数据。 如果你需要前一步的处理结果来进行下一步,这种方法也行不通。 那GIL的问题呢? 你可能知道Python有个叫全局解释器锁(Global Interpreter Lock)的东西,即GIL。 这意味着即使你的程序是多线程的,每个线程也只能执行一个Python指令。 GIL确保任何时候都只有一个Python线程执行。 换句话说: 多线程的Python代码并不能真正地并行运行,从而无法充分利用多核CPU。 但是Process Pool能解决这个问题! 因为我们是运行单独的Python实例,每个实例都有自己的GIL。 这样我们获得是真正能并行处理的Python代码! 不要害怕并行处理! 有了concurrent.futures库 Python就能让你简简单单地修改一下脚本后,立刻让你电脑上所有CPU投入到工作中。 不要害怕尝试这种方法,一旦你掌握了 它就跟一个for循环一样简单 却能让你的数据处理脚本快到飞起。 |
时间:2019-07-23 22:44 来源: 转发量:次
声明:本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,不为其版权负责。如果您发现网站上有侵犯您的知识产权的作品,请与我们取得联系,我们会及时修改或删除。