行业报告 AI展会 数据标注 标注供求
数据标注数据集
主页 > 机器人 正文

谷歌提供新框架使机器人自主规划路程

 

谷歌机器人研究部门在一篇博客文章中表示,他们正在研究如何让机器人自己进行长距离移动。高级研究科学家Aleksandra Faust和高级机器人软件工程师Anthony Francis表示:“仅在美国,就有300万人患有行动障碍,无法出门,机器人可以帮助行动不便的人做一些简单的事情,比如拿食品、药品或包裹等。”

 

在某种程度上,通过使用强化学习(RL)可以做到这一点,这是一种人工智能训练技术,它利用奖励来驱动个体朝着目标前进。福斯特、弗朗西斯和他的同事们将强化学习与长距离规划路线结合起来,编出能够安全穿越短距离(约15米)且不会撞上移动障碍物的程序。他们利用AutoRL,一个自动搜索强化学习奖励和神经网络架构的工具,在模拟环境中进行训练,再使用经过训练的程序构建路线图,或由节点(位置)和边组成图。

 

 

使用传统RL方法的训练,仍存在许多问题,比如它需要花费时间迭代和手工调整奖励,并在人工智能架构方面不够明智,更不用说减轻遗忘,这种现象是指人工智能系统在学习新信息时,突然忘记了以前学过的信息。

 

AutoRL试图通过两个阶段来解决这个问题,奖励搜索和神经网络架构搜索。在第一阶段, 每个奖励功能略有不同,在这个阶段的最后,通常会选择将带到其目的地的奖励。神经网络架构搜索阶段本质上是第一阶段的重复,但使用选定的奖励来优化网络,并对累积奖励进行优化。

 

这个自动化的训练过程,可以减轻模型的遗忘情况,并且与现有技术相比,由此产生的策略的质量更高(导航任务的质量提高了26%),它们甚至足够强大,可以在非结构化环境中引导机器人。

 

AutoRL制定的策略,对本地导航很有帮助,但远程导航就需要用到概率路线图了,它们是基于采样的规划器的一个子类,对机器人的姿态进行采样,创建符合机器人特性的路线图。

 

福斯特和弗朗西斯解释说:“首先,我们在一个通用的模拟训练环境中对机器人进行训练,训练一个本地规划策略。再根据该策略构建一个PRM,称为PRM-rl,它位于部署环境的平铺图之上,相同的平面图可以用于任何机器人。”

 

为了评估PRM-RL,谷歌的研究人员使用比培训环境大200倍的办公室楼层地图构建了一个路线图,在20次试验中,成功率达90%以上。

微信公众号

声明:本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,不为其版权负责。如果您发现网站上有侵犯您的知识产权的作品,请与我们取得联系,我们会及时修改或删除。

网友评论:

发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片
SEM推广服务

Copyright©2005-2028 Sykv.com 可思数据 版权所有    京ICP备14056871号

关于我们   免责声明   广告合作   版权声明   联系我们   原创投稿   网站地图  

可思数据 数据标注

扫码入群
扫码关注

微信公众号

返回顶部