未来数据战争:区块链技术的军事应用
随着以比特币为代表的各种虚拟币的热度不断提高,其背后的支撑技术——区块链技术也引起了业界的强烈关注。区块链就是一种网络上的各参与者都能共享但没有哪个单一实体能够控制的共享分布式防篡改数据库。由于区块链技术有去中心化、去信任、防篡改等突出优点,其应用已经不仅限于金融圈,逐渐进入到军事领域。包括美国和北约在内的多个国家和组织都在积极探索区块链技术在军事领域的应用。
利用区块链可提供一种数据战网络设计、运营和防御的新范式。区块链可用于在高度对抗环境中对敌作战, 让指挥官和参谋人员能可靠指挥和控制部队。区块链的机理是假设网络中存在敌方;利用未受损节点的数量优势压制敌方行动;让信息永久防操控或破坏。总之,区块链是在一个不可信的世界中创造了一种可信系统,有巨大的军事应用潜力。
区块链的概念
所谓区块链就是一种网络上的每个参与者都能共享但没有哪个单一实体能够控制的共享分布式防篡改数据库。换句话说,区块链是一种存储数字记录的数据库。网络参与者群体可以共享该数据库,所有网络参与者都可提交纳入区块链的新记录。然而, 这些记录只有经过该群组大多数人的同意(即获得共识)后才能添加到数据库当中。此外,一旦记录加入就永不可修改或删除。总之,区块链记录数字信息并保护其安全的方式是使之成为该群组一致认可的过往记录。
区块链是由中本聪( 化名) 于2008年与加密货币“比特币”概念一起首次提出的。中本聪的设想是“交易双方可以不经过金融机构直接进行在线支付。”然而,没有可信中央权威实体监督账目和交易,没法防止不诚实人的一币多花问题。中本聪的解决方案是采用一种带时间戳的、基于共识的加密标记交易分布式数据库,这些交易形成不能篡改的记录——区块链。比特币于2009年变为现实,从那时到2016年4月,比特币的市场资本总额从0增长到超过63亿美元,2018年更是超过1000亿美元。每天都有约660万比特币用户在全网进行12万笔交易,交易额超过7500万美元。
比特币是区块链技术应用的一个着名实例。曾经发生的每一次比特币流通、每笔比特币交易以及每笔比特币账目都记录在运行于开放互联网上的区块链数据库中,完全暴露在政府、犯罪组织和黑客面前。但比特币区块链从未被黑过。因此这一技术非常值得研究。
虽然许多年来,比特币实际上成了“区块链”的代名词,但二者明显是两种不同的技术。比特币仅仅是区块链的第一种流行应用,就如同Email是互联网的第一个流行应用一样。实际上,区块链应用潜力巨大。区块链的支持者将区块链的成熟度和创新潜力比作1992年的互联网(万维网之前的互联网)。然而,区块链技术只是简单利用了现有互联网基础设施,区块链技术的成熟进步速度是互联网的三倍,未来数年内就有望进入主流应用。
业界也认识到了区块链技术的潜力。自2013年起,有超过10亿美元风险投资投给了120个区块链初创项目。其用途各异,从金融到不可分割资产的跟踪和贸易,如钻石和艺术品, 到可作为法庭呈堂证供的数字公证服务。涉及的利益也比一开始有大幅膨胀。成熟的大型公司,如洛马公司、IBM、高盛等,也开始研究区块链在各自领域的潜在应用。
区块链解决了在部分参与者不可信的不可靠网络上可靠交换信息的数据科学难题。区块链安全模型从本质上假设整个流通中会有不诚实的参与者,他们不仅会制造虚假数据,而且会试图操纵诚实参与者传来的有效数据。区块链会利用各种消息传送和共识技术,拒绝无效数据,防止有效数据被秘密修改或删除,从而保证数据完好性。
区块链相比传统网络防御策略有三大优势:第一,区块链假设网络攻击既来自敌方也来自可信内部人员, 因此它不采用边界防护的方式,而是设计用于在一种冲突网络环境中保护数据。第二,区块链网络利用网络的集体力量积极对抗恶意行为者的动作。即,区块链会利用以多打少的不对称优势。最后,区块链实现安全性不依赖于秘密或信任。区块链中,没有终会暴露的所谓秘密,没有待保护的密钥,也没有可信管理者。区块链提供的是一种内在安全功能,还可根据应用需求在其上添加其他安全功能。正是有了这些优势,区块链才能在没有可信中央权威机构的情况下在开放的互联网上成功安全运行,并完全暴露给恶意行动者。区块链在敌方采取恶意行动的情况下仍能保护数据完好性, 因而对于军队在未来高度冲突环境中取胜有着巨大的军事实用性。
区块链技术构成
与大部分技术一样,区块链也综合运用了多项其他新兴技术提供独特的新功能和能力。
哈希计算:数字指纹
区块链采用一种称为安全哈希算法(SHA)( 即哈希计算,hashing) 的加密术。与其他加密方式不同,安全哈希算法不使用所谓秘密,如口令或密钥。哈希计算规范是由美国国家标准技术研究所(NIST)开发的,可供政府和私营实体公开使用。哈希计算用于将任意长度的数字信息(如,文本、图片、视频等)转换为预定长度位的串。例如,通过SHA-256算法处理过的数字信息将输出256位的字符串, 相当于字母数字文本的32字符串。安全哈希值有两个重要属性。首先,该算法是单向的。即,不能根据输出推导出输入。其次,对于任意全局唯一的输入,输出字符串也是全局唯一的。通过相同哈希算法处理相同信息片段总是返回相同结果,同时不会有其他输入会生成同一结果。表1说明了这一点。通过SHA-1哈希算法处理某点地理坐标,生成的是一个40个字母数字字符的串。将位置经度小数点后第四位加1造成8.5米偏差后再次处理。这次处理后计算的哈希值与原始哈希值几乎完全不同。将一幅图修改一个像素或将某本书修改一个字母,也会出现类似情况。因此,哈希计算是在不直接检查数据的情况下验证一段数据完好性的有效工具。
数据结构及其内容
区块链是一个由一群记录“区块”组成的数据库,每个区块都包含有到前一区块的加密链接,形成一个链。区块链开始的区块称为“创世区块”。新区块添加时,要堆叠在前一区块之上。区块链示意图如图1所示。区块链就像一本书中的书页。每个区块(书页) 都包括一个区块头(就像书页顶部的识别信息)和内容(如,书页中的文字)。每个区块的区块头都含有多段信息,而本文仅描述三段信息。区块头中首先也是最重要的是信息数字指纹, 即前一区块的哈希值。接下来是标识该区块创建时间的时间戳。最后是该区块的内容哈希值。
内容哈希也称为默克尔哈希,是默克尔哈希树最高节点(根节点)处的哈希值。默克尔哈希树是一种加密数据结构,利用数学方式将一个区块的全部内容链接到一个单一哈希值。让任意用户都可快速重构任意区块, 利用最少信息量证实其内容的完好性。区块链中每个区块都会链接到其前一个区块,因而具备内部一致性,不用检查任何区块的内容就可以验证一致性,就像不用读书的内容就可以验证每一页的存在一样。这种数据结构对于区块链安全性非常重要。
每个区块中存储的信息集合可以是任何数字内容,包括简单文本、结构化消息、图片和视频等。区块链中存储的任何信息都是永久安全的,都是永不可更改的历史记录。
确定区块链内容时需要在两个因素间进行基本权衡:机密性和文件大小。区块链中存储的任何东西都能被所有网络成员看到。这一特性的优缺点都很明显,优势包括能够轻松在全网验证信息,劣势则包括无法控制能看到该信息的人。文件大小也是个重要因素,因为完整区块链包含以往加入的每一条数据记录。如果数据记录太大且添加频繁,则区块链也会十分巨大,这就是所谓的“膨胀”问题。在去中心化的区块链网络中,膨胀问题更为严重,因为区块链中有多个网络节点独立构造数据库。
共识机制
共识就是一个不管有多少有缺陷过程也能让一套分布式过程就一个值或一个动作达成协议的过程。其正式名称为“拜占庭将军”问题。一种最着名的共识算法叫实用拜占庭容错(PBFT),在安全关键系统中普遍使用, 如飞机上的四冗余导航系统。在区块链网络中,共识机制用于防止不诚实行为人向数据库中写入可能无效的信息。任意给定区块链使用的具体共识机制取决于许多假设条件,包括双方间的信任度以及其利益的一致性,还包括网络形状和同步等相关因素。例如,比特币共识模型是一种去中心化和去信任模型。因此,每个节点独立验证每笔交易;独立验证新区块;在区块链中出现“分叉”时,独立选择算力最长的分支。从军事意义上说, 共识机制利用多数诚实节点对少量不诚实节点的数量优势实现对敌的不对称优势。因此,随着网络规模的增长, 攻击区块链会越发困难。
网络体系
区块链可以采用多种网络体系, 从完全中心化到完全分布式体系,如图2所示。但无论采用哪种网络体系, 都要在安全性和效率间进行权衡。例如,在中心化网络中,所有外层节点都依赖中心节点实现网络功能。因此, 如果中心节点被攻击,则整个网络都可能受到影响。而另一方面,则是每个节点都独立于任何其他节点发挥功能的分布式网络。分布式节点个体受到侵害不会危及网络整体。
访问控制
区块链的访问控制通过两种方式实现:许可方式和非许可方式。非许可方式是公有链采用的方式,运作时没有访问控制。只要有适当软件和连接,任何人都能加入网络并与区块链接口,无需中央权威实体许可。相反, 许可方式,即私有链采用的方式,让管理员可控制网络参与者、能看到区块链哪些部分、谁可向区块链中写入、甚至共识群体的组成。
网络节点类型
网络节点既是区块链用户也是防御者。作为用户,网络节点既会生成待纳入区块链中的新记录也会利用区块链获取历史信息。网络节点也可通过参与共识机制的方式保护区块链,虽然并不是所有节点都参与每次共识过程,这要取决于访问控制等措施。任何区块链网络中的节点类型都会不同, 取决于网络用途。
在军事场景中,根据相关能力, 如处理、存储、通信等,可设想构建三类节点,包括全节点、部分节点和简单节点。每种节点的实例和职责如表2所示。全节点作为区块链网络的骨干, 最重要的功能是建立和维护区块链数据库的最新完整副本。其另一重要功能是生成新区块,然后分发到其他节点。接下来,全节点将验证新交易或收到的来自其他节点的区块,保证其符合共识规则并维护数据库的内部一致性。最终,与所有其他节点一样,全节点会生成和发送纳入数据库的新记录。
第二类节点是部分节点。由于平台设计上的限制,部分节点没有足够的能力维护区块链数据库的完整副本, 只保留只包含每个区块的区块头的区块链副本。如之前所述,区块头包括之前区块的区块头哈希值、时间戳以及当前区块内容的哈希值。这样,部分节点不仅可以验证区块链的一致性, 还可以完全验证每个新区块。一旦验证完成,则只保留该区块的区块头数据。在比特币中,这种受到限制的区块链模型将数据库大小缩小了1000倍,从45GB缩小到了只有45MB。然而,由于丢弃了区块内容,因此部分节点要验证任意之前的交易需要全节点的支持。
第三类节点是简单节点。如表2所示,简单节点只生成、发送和验证新记录。简单节点在设计上是能力有限的低成本商品化设备。但区块链网络中的这种节点对于共识机制仍很有价值。
区块链的军事应用
区块链技术在国防应用中非常有用。以下将描述三个具体用例。在这三个用例中,区块链无论对其运行还是支持都十分有用。
网络防御:数据完好性
网络防御是一种区块链技术的低成本高回报应用。如前所述,网络安全要依赖秘密和信任维护安全性,但这二者都无法保证。而区块链的运行与秘密和信任无关。斯诺登就是利用对其管理员身份的信任,复制了多份特权文件,然后篡改了可监控其行为的审计日志。
区块链则可通过两种方式保护真相。首先,它会将数字事件信息发送给区块链网络上的其他节点,让数字事件得到广泛见证。然后,区块链可利用共识机制确保这些事件在数据库中永不会被敌方修改,从而保证其安全。
区块链还可增强网络防御的边界安全策略,不仅仅是帮助在边界上修起高墙,而且还可监测高墙以及墙内的一切事物。现代系统的复杂度不断提升, 包括武器系统,漏洞越来越多,可检测性却越来越差。采用区块链不是要查找漏洞,这无异于大海捞针,而是监控组成待保护系统的每项数字资产。如果针对系统的恶意攻击是针对系统配置的完好性攻击,那么利用区块链, 系统中每个构件的配置都进行了镜像, 进行了哈希计算,并放到数据库中保护其安全,之后还不断受到监控。对任何配置的任何非计划性修改,不管是修改多小都会被立即检测出来。
供应链管理
由于军用系统的嵌入式软件系统越来越多使用商业现货构件,因此军方对于国防系统供应链的忧虑越来越大。这些商业构件很可能包含一些蓄意留下的漏洞,敌方可能会择机利用这些漏洞。美国一本名为《幽灵舰队》的小说曾大肆渲染了这一威胁。在这本小说中,虚构了某国利用故意嵌入在日常电路板中的漏洞,使一整队F-35机群丧失了作战能力。因此,需要实现资产的溯源和所有权可追溯能力。
采用区块链就是一种解决方案, 空军可对从飞机支架到驾驶舱的每一片电路板、传感器和每个软件构件进行溯源。电路板设计公司可以使用区块链记录电路的每次设计迭代。制造商可记录其生产的每个型号和每片电路板的序列号。最后,批发商可记录每批电路向系统集成商的销售情况, 而后者可能会记录电路分配到具体飞机组件的情况等等。这样,就利用区块链建立了资产所有者间传递资产的永久记录,并因此建立了溯源机制。
这种系统明显对军方和国防工业都十分有益,不只是系统生产阶段。许多武器系统的设计寿命达30年以上。然而,这些系统所用计算技术的设计寿命期却很少超过10年。因此, 随着时间的推移替换老旧零件非常困难。此外,美国联邦法律禁止美国国防部使用无法溯源的部件;任何所有权状态不连续的零件都不能使用,即使这些零件确实有用,且需求量很高。除可帮助美国国防部支持既有系统外, 分销商在区块链中跟踪特别指定的商业现货构件并维持其可溯源还可获得经济利益。
弹性通信
采用区块链技术可以在高度竞争环境中提供弹性通信。在高端冲突中, 军方必须做好应对敌方争夺电磁频谱的准备,特别是针对关键通信系统,如卫星、水下线缆、战术数据链等。此外, 敌方还会尝试操控用于完成杀伤链的数据。对抗这种威胁需要能够安全生成、保护和共享数据,不受敌方行动的影响。而区块链网络就能提供这些能力。
比特币网络实现了这些能力的去中心化。比特币由于相互强制执行其安全协议,包括其消息传递系统,其协议对各种通信介质的适配性,采用分布式区块链数据库以及共识机制, 因此抗抑制能力比较强。比特币采用点对点消息传送模型,数秒内即可将每一消息传播到遍布全世界的每个活跃节点。比特币网络中的每个节点都参与这一服务,包括智能手机。如果节点的地面、无线或卫星互联网服务中断,比特币消息仍可通过备用信道发送,如HF无线电、传真,甚至可转为条形码人工携带。一旦收到消息, 服务节点就可验证该消息,然后将其转发给连接的每个对等连接节点。其中有7000个可独立将消息聚合到新区块中的全节点。由于没有中心化的主节点被中断,因此网络在大部分连接中断时仍可工作。最后,区块链的共识机制可保证不诚实行动者生成的无效消息和区块会被忽略。这些协议一同保证了验证后的消息业务可以在全世界可靠传输,即使有针对通信路径、各节点或区块链本身的恶意攻击。
结语
军队能够在未来的高度冲突环境中取得胜利,取决于其是否能成功执行数据作战行动。即保护其自己生成、存储、分发、处理、分析和利用信息的能力,同时干扰对手的同等能力。很明显,这需要保护网络化系统不受威胁。然而,虽然网络威胁在不断发展,但对应的网络防御措施却发展缓慢。这种威胁不仅是由于恶意软件和嵌入式计算设备的数量不断增长造成的,而且还在于敌方通过简单盗取数据为数据操纵提供支持的策略。因此, 军队要在数据战中取得胜利,需要开发一种能够克服当前策略之不足和未来威胁的网络防御模型。
区块链技术就提供了这样一种模型。区块链没有采用传统网络安全措施许多有问题的假设条件。首先,区块链是去信任的。区块链假设会受到内外部攻击。其次,区块链具备透明安全性,它不依赖于易出现问题的所谓秘密,而是依赖一种加密数据结构, 作为添加附加安全协议的安全基础。最后,区块链是容错的,它们使用算法共识机制协调诚实节点的工作,拒绝不诚实节点。这三个属性让系统设计人员可以重新构思网络空间系统和网络的基础架构。区块链技术的军事应用潜力巨大。
时间:2019-03-05 21:29 来源: 转发量:次
声明:本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,不为其版权负责。如果您发现网站上有侵犯您的知识产权的作品,请与我们取得联系,我们会及时修改或删除。
相关文章:
相关推荐:
网友评论:
最新文章
热门文章