行业报告 AI展会 数据标注 标注供求
数据标注数据集
主页 > 机器学习 正文

DeepMind推出深度学习与强化学习进阶课程(附视频

在 OpenAI 推出强化学习课程 Spinning Up 后不久。昨天,DeepMind 与 UCL 合作推出了一门深度学习与强化学习进阶课程,以在线视频形式呈现。该课程共有 18 节课,每节课都长达 1 小时 40 分钟,内容从深度学习框架 TensoFlow 的介绍到构建游戏智能体,可谓全面。

课程地址:https://www.youtube.com/playlist?list=PLqYmG7hTraZDNJre23vqCGIVpfZ_K2RZs

该课程最初在伦敦大学学院(UCL)进行,为方便在线观看进行了录像。多位 DeepMind 的研究人员、UCL 教师参与了课程的设计。

 

 

参与课程制作的 DeepMind/UCL 团队

课程由两部分组成,一是包含深度神经网络的机器学习,二是利用强化学习进行预测和控制,两个部分相互穿插。在探讨深度学习的过程中,这两条线交汇在一起,其中的深度神经网络被训练为强化学习背景下的函数逼近器。

课程中的深度学习部分首先介绍了神经网络及使用 TensorFlow 的监督学习,接下来探讨了卷积神经网络、循环神经网络、端到端及基于能量的学习、优化方法、无监督学习、注意力及记忆。涉及的应用领域包括目标识别和自然语言处理。

 

 

第一课视频截图

深度强化学习部分介绍了马尔科夫决策过程、动态规划、无模型预测与控制、值函数近似、策略梯度方法、学习与规划整合、探索/利用困境等。涉及的应用领域包括学习玩经典棋盘游戏或电子游戏等。

第一课视频:

 

 

https://v.qq.com/x/page/q0800xbw8ft.html

 

 

从第一课来看,本课程将讲解 DeepMind 的 AI 方法,深度强化学习在雅达利、AIphaGo 等游戏中的应用。

课程目录

深度学习 1:基于机器学习的人工智能简介

深度学习 2:TensorFlow 简介

深度学习 3:神经网络基础

强化学习 1:强化学习简介

强化学习 2:探索和利用

强化学习 3:马尔科夫决策过程及动态规划

强化学习 4:无模型预测与控制

深度学习 4:图像识别之外、端到端学习、嵌入

强化学习 5:函数逼近及深度强化学习

强化学习 6:策略梯度及 Actor Critic 算法

深度学习 5:用于机器学习的优化

强化学习 7:规划与模型

深度学习 6:用于自然语言处理的深度学习

强化学习 8:深度强化学习进阶主题

深度学习 7:深度学习中的注意力与记忆

强化学习 9:深度强化学习智能体概览

深度学习 8:无监督学习和生成模型

强化学习 10:经典游戏案例学习

课程门槛

 

 

当然,这样一门进阶课程也是有一定门槛的。授课者提到,去年就有很多人抱怨课程负担太重。选这门课程的人需要懂 Python,还要有很多其他知识储备。另外,由于授课者都是活跃在学界的顶级研究者,课程会直接延伸到当前的研究前沿。

教师寄语:做好准备,迎接挑战!(brace yourselves!)

微信公众号

声明:本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,不为其版权负责。如果您发现网站上有侵犯您的知识产权的作品,请与我们取得联系,我们会及时修改或删除。

网友评论:

发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片
SEM推广服务

Copyright©2005-2028 Sykv.com 可思数据 版权所有    京ICP备14056871号

关于我们   免责声明   广告合作   版权声明   联系我们   原创投稿   网站地图  

可思数据 数据标注

扫码入群
扫码关注

微信公众号

返回顶部