论机器学习领域的内卷:不读PhD,我配不配找工
内卷了吗?
「没有博士学位,在机器学习领域就业会变得越来越难吗?」最近,一个 Reddit 热帖引发了大量讨论。
对于单个研究者、从业者来说,毫无疑问,机器学习领域确实「卷」起来了。这几年来,仿佛每个人都在搞机器学习,在这个领域取得博士学位的人也急剧增加。
一方面,AI 技术的高速发展并走向落地,创造了大量与机器学习有关的岗位和工作内容;一方面,大量人才的涌入,让这个领域的就业门槛被不断抬高……
有人说,将成为下一个「天坑」专业。身处浪潮之中,我们如何自处?
博士学位和 ML 工作的关系
根据发帖者的描述,发帖人认为从事机器学习的研究者太多了,如果没有博士学位,可能很难找到工作。对此,有网友表示,「这取决于机器学习相关工作的增长速度是比 ML PhD 增长速度慢还是快。但是,并不是所有的 ML 工作都需要 PhD。比如 ML 工程师工作,他们更关注 ML 模型的基础和部署,而不是开发。」
「与此同时,自动化工具和 AutoML 平台正在创建中,目前许多正在招聘 PhD 的公司可能不再需要专业知识很强的研究人员。在未来,从事 ML 工作的 PhD 很可能会为那些构建自动化 ML 平台的公司工作。」
也不是所有机器学习领域的工作都需要博士学位。机器学习领域的工作和企业种类繁多,实际上很难一概而论。最终结果取决于所从事工作的类型:
创造一种新的机器学习方法,代替 CNN、Transformers 等,主要产出是专利或发表的论文;
只是在不同数据集上使用机器学习模型,主要产出是某个数据产品(恰好开发过程中使用了机器学习而已)。
如果是前者,那这个团队确实需要几个协作推动研究的博士;如果是后者,就不一定了(尽管理想中程序员较好也具备读论文的能力)。
不唯学历论
可能大家都认为,学历高了,自然就好找工作。但是对于没有博士学位的人,工作状况又如何呢?有网友表示,「我现在的工作以及以前的工作都要求有 PhD。虽然我没有,但两个公司都接受了我。我有个朋友 ta 的公司也要求有 PhD,同样,他也没有。」
「公司会雇佣那些他们认为能够填补团队技能缺口、帮助完成工作的人,但这并不意味着有 PhD 不是一种优势。拥有 CICD 经验是一种优势,拥有领域知识也是一种优势…… 公司想要雇佣哪种员工,取决于这个人给团队带来的价值。」
「我雇佣数据科学家,我真的不在乎有没有 PhD。可以将有无 PhD 进行混合,这样会更好。我发现 PhD 不太愿意去做那些在工业上大量应用 ML 工作。他们更倾向于学术上的内容、创造性低。这是因为他们可能更依赖于学术和既定的较佳实践,并且年龄相同但具有丰富行业经验的人可能会更加务实。因此将 PhD 和非 PhD 混合使用非常有用。」
换个具体点的角度来说,从人才招聘的操作上看,世界上肯定会有很多没有博士学位的卓越人才,但 HR 为什么要费更多的精力去寻找这些人,而不是直接在丰富的博士人才库挑选呢?
「有趣的是,每当讨论类似问题时,都会有讨论试图列出大量证据,表明自己遇见过哪种不靠谱的博士。但当我们搜索机器学习领域的好工作时,仍然发现博士学位是推荐。」
参考链接:
https://www.reddit.com/r/MachineLearning/comments/mgf9tf/d_if_the_number_of_machine_learning_phd_graduate/
声明:文章收集于网络,版权归原作者所有,为传播信息而发,如有侵权,请联系小编删除,谢谢!
时间:2021-04-03 20:18 来源: 转发量:次
声明:本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,不为其版权负责。如果您发现网站上有侵犯您的知识产权的作品,请与我们取得联系,我们会及时修改或删除。
相关文章:
- [机器学习]Facebook新AI模型SEER实现自监督学习,LeCun大赞最有
- [机器学习]一文详解深度学习最常用的 10 个激活函数
- [机器学习]增量学习(Incremental Learning)小综述
- [机器学习]盘点近期大热对比学习模型:MoCo/SimCLR/BYOL/SimSi
- [机器学习]AAAI21最佳论文Informer:效果远超Transformer的长序列
- [机器学习]深度学习中的3个秘密:集成、知识蒸馏和蒸馏
- [机器学习]堪比当年的LSTM,Transformer引燃机器学习圈:它是
- [机器学习]深度学习三大谜团:集成、知识蒸馏和自蒸馏
- [机器学习]Facebook新AI模型SEER实现自监督学习,LeCun大赞最有
- [机器学习]一文详解深度学习最常用的 10 个激活函数
相关推荐:
网友评论:
最新文章
热门文章