行业报告 AI展会 数据标注 标注供求
数据标注数据集
主页 > 机器学习 正文

来自Facebook AI的多任务多模态的统一Transformer:向

一个模型完成了CV,NLP方向的7个任务,每个任务上表现都非常好。
论文链接:https://arxiv.org/pdf/2102.10772.pdf

 

Transformer架构在自然语言处理和其他领域的(ML)任务中表现出了巨大的成功,但大多仅限于单个领域或特定的多模态领域的任务。例如,ViT专门用于视觉相关的任务,BERT专注于语言任务,而VILBERT-MT只用于相关的视觉和语言任务。
 
一个自然产生的问题是:我们能否建立一个单一的Transformer,能够在多种模态下处理不同领域的广泛应用?最近,Facebook的一个研究团队进行了一个新的统一Transformer(UniT) encoder-decoder模型的挑战,该模型在不同的模态下联合训练多个任务,并通过一组统一的模型参数在这些不同的任务上都实现了强大的性能。

 

Transformer首先应用于sequence-to-sequence模型的语言领域。它们已经扩展到视觉领域,甚至被应用于视觉和语言的联合推理任务。尽管可以针对各种下游任务中的应用对预先训练好的Transformer进行微调,并获得良好的结果,但这种模型微调方法会导致为每个下游任务创建不同的参数集。
 
Facebook的人工智能研究人员提出,一个Transformer可能就是我们真正需要的。他们的UniT是建立在传统的Transformer编码器-解码器架构上,包括每个输入模态类型的独立编码器,后面跟一个具有简单的每个任务特定的头的解码器。输入有两种形式:图像和文本。首先,卷积骨干网提取视觉特征,然后BERT将语言输入编码成隐藏状态序列。然后,Transformer解码器应用于编码的单个模态或两个编码模态的连接序列(取决于任务是单模态还是多模态)。最后,Transformer解码器的表示将被传递到特定任务的头,该头将输出最终的预测。

 

UniT模型概要
 
评估UniT的性能,研究人员进行了实验,需要共同学习来自不同领域的许多流行的任务:COCO目标检测和 Visual Genome数据集,语言理解任务的GLUE基准(QNLI, QQP、MNLI-mismatched SST-2),以及视觉推理任务VQAv2 SNLI-VE数据集。

 

多任务训练的UniT性能优于单独训练的目标检测和VQA

 

基于UniT模型的目标检测与VQA的分析

 

UniT模型在8个数据集的7个任务上的性能

 

具有共享解码器的UniT模型的预测
 
结果表明,所提出的UniT 模型同时处理8个数据集上的7个任务,在统一的模型参数集下,每个任务都有较强的性能。强大的性能表明UniT有潜力成为一种领域未知的transformer 架构,向更通用的智能的目标迈进了一步。
 
英文原文:
https://medium.com/syncedreview/facebook-ais-multitask-multimodal-unified-transformer-a-step-toward-general-purpose-98db2c858603
 
声明:文章收集于网络,版权归原作者所有,为传播信息而发,如有侵权,请联系小编删除,谢谢!
 
 

微信公众号

声明:本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,不为其版权负责。如果您发现网站上有侵犯您的知识产权的作品,请与我们取得联系,我们会及时修改或删除。

网友评论:

发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片
SEM推广服务

Copyright©2005-2028 Sykv.com 可思数据 版权所有    京ICP备14056871号

关于我们   免责声明   广告合作   版权声明   联系我们   原创投稿   网站地图  

可思数据 数据标注

扫码入群
扫码关注

微信公众号

返回顶部