行业报告 AI展会 数据标注 标注供求
数据标注数据集
主页 > 机器学习 正文

回归树的原理及其 Python 实现

 

提到回归树,相信大家应该都不会觉得陌生(不陌生你点进来干嘛[捂脸]),大名鼎鼎的 GBDT 算法就是用回归树组合而成的。本文就回归树的基本原理进行讲解,并手把手、肩并肩地带您实现这一算法。

完整实现代码请参考 github:

1. 原理篇

我们用人话而不是大段的数学公式,来讲讲回归树是怎么一回事。

1.1 最简单的模型

如果预测某个连续变量的大小,最简单的模型之一就是用平均值。比如同事的平均年龄是 28 岁,那么新来了一批同事,在不知道这些同事的任何信息的情况下,直觉上用平均值 28 来预测是比较准确的,至少比 0 岁或者 100 岁要靠谱一些。我们不妨证明一下我们的直觉:

  1. 定义损失函数 L,其中 y_hat 是对 y 预测值,使用 MSE 来评估损失:
     L = -Largefrac{1}{2}normalsizesum_{i=0}^m(y_i-hat{y}) ^ 2
  2. 对 y_hat 求导:
     large frac{mathrm{d}L}{mathrm{d}hat{y}} normalsize = sum_{i=0}^m(y_i-hat{y}) = sum_{i=0}^my_i - sum_{i=0}^mhat{y} = sum_{i=0}^my_i - m*hat{y}
  3. 令导数等于 0,最小化 MSE,则:
     sum_{i=0}^my_i - m*hat{y} = 0
  4. 所以,
     hat{y} = Largefrac{1}{m}normalsizesum_{i=0}^my_i
  5. 结论,如果要用一个常量来预测 y,用 y 的均值是一个最佳的选择。

1.2 加一点难度

仍然是预测同事年龄,这次我们预先知道了同事的职级,假设职级的范围是整数1-10,如何能让这个信息帮助我们更加准确的预测年龄呢?

一个思路是根据职级把同事分为两组,这两组分别应用我们之前提到的“平均值”模型。比如职级小于 5 的同事分到A组,大于或等于5的分到 B 组,A 组的平均年龄是 25 岁,B 组的平均年龄是 35 岁。如果新来了一个同事,职级是 3,应该被分到 A 组,我们就预测他的年龄是 25 岁。

1.3 最佳分割点

还有一个问题待解决,如何取一个最佳的分割点对不同职级的同事进行分组呢?

我们尝试所有 m 个可能的分割点 P_i,沿用之前的损失函数,对 A、B 两组分别计算 Loss 并相加得到 L_i。最小的 L_i 所对应的 P_i 就是我们要找的“最佳分割点”。

1.4 运用多个变量

再复杂一些,如果我们不仅仅知道了同事的职级,还知道了同事的工资(貌似不科学),该如何预测同事的年龄呢?

我们可以分别根据职级、工资计算出职级和工资的最佳分割点P_1, P_2,对应的Loss L_1, L_2。然后比较L_1和L2,取较小者。假设L_1 < L_2,那么按照P_1把不同职级的同事分为A、B两组。在A、B组内分别计算工资所对应的分割点,再分为C、D两组。这样我们就得到了AC, AD, BC, BD四组同事以及对应的平均年龄用于预测。

1.5 答案揭晓

如何实现这种1 to 2, 2 to 4, 4 to 8的算法呢?

熟悉数据结构的同学自然会想到二叉树,这种树被称为回归树,顾名思义利用树形结构求解回归问题。

2. 实现篇

本人用全宇宙最简单的编程语言——Python实现了回归树算法,没有依赖任何第三方库,便于学习和使用。简单说明一下实现过程,更详细的注释请参考本人github上的代码。

2.1 创建Node类

初始化,存储预测值、左右结点、特征和分割点

 

2.2 创建回归树类

初始化,存储根节点和树的高度。

 

2.3 计算分割点、MSE

根据自变量X、因变量y、X元素中被取出的行号idx,列号feature以及分割点split,计算分割后的MSE。注意这里为了减少计算量,用到了方差公式:
 D(X) = E{[X-E(X)]^2} = E(X^2)-[E(X)]^2

 

2.4 计算最佳分割点

遍历特征某一列的所有的不重复的点,找出MSE最小的点作为最佳分割点。如果特征中没有不重复的元素则返回None。

 

2.5 选择最佳特征

遍历所有特征,计算最佳分割点对应的MSE,找出MSE最小的特征、对应的分割点,左右子节点对应的均值和行号。如果所有的特征都没有不重复元素则返回None

 

2.6 规则转文字

将规则用文字表达出来,方便我们查看规则。

 

2.7 获取规则

将回归树的所有规则都用文字表达出来,方便我们了解树的全貌。这里用到了队列+广度优先搜索。有兴趣也可以试试递归或者深度优先搜索。

 

2.8 训练模型

仍然使用队列+广度优先搜索,训练模型的过程中需要注意:

  1. 控制树的最大深度max_depth;
  2. 控制分裂时最少的样本量min_samples_split;
  3. 叶子结点至少有两个不重复的y值;
  4. 至少有一个特征是没有重复值的。

 

 

2.9 打印规则

模型训练完毕,查看一下模型生成的规则

 

2.10 预测一个样本

 

 

2.11 预测多个样本

 

 

3 效果评估

3.1 main函数

使用著名的波士顿房价数据集,按照7:3的比例拆分为训练集和测试集,训练模型,并统计准确度。

 

3.2 效果展示

最终生成了15条规则,拟合优度0.801,运行时间1.74秒,效果还算不错~

v2-f18bda130e08931020827c562c57f22e_hd

3.3 工具函数

本人自定义了一些工具函数,可以在github上查看  1. run_time – 测试函数运行时间 2. load_boston_house_prices – 加载波士顿房价数据 3. train_test_split – 拆分训练集、测试机 4. get_r2 – 计算拟合优度

总结

回归树的原理:

损失最小化,平均值大法。 最佳行与列,效果顶呱呱。

回归树的实现:

一顿操作猛如虎,加减乘除二叉树。

 

原文:https://zhuanlan.zhihu.com/p/41688007

【关于作者】

李小文:先后从事过数据分析、数据挖掘工作,主要开发语言是Python,现任一家小型互联网公司的算法工程师。Github: 

微信公众号

声明:本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,不为其版权负责。如果您发现网站上有侵犯您的知识产权的作品,请与我们取得联系,我们会及时修改或删除。

网友评论:

发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片
SEM推广服务

Copyright©2005-2028 Sykv.com 可思数据 版权所有    京ICP备14056871号

关于我们   免责声明   广告合作   版权声明   联系我们   原创投稿   网站地图  

可思数据 数据标注

扫码入群
扫码关注

微信公众号

返回顶部