行业报告 AI展会 数据标注 标注供求
数据标注数据集
主页 > 机器学习 正文

给BERT加一个loss就能稳定提升?斯坦福+Facebook最新

关注CV领域的小伙伴一定都记得Hinton团队在年初提出的SimCLR[1],采用自监督的对比学习方法进行encoder的训练,各种碾压之前的模型。所以今年我一直在等某个大招,终于在20年的尾巴看到了一丝希望。
 
今天要介绍的这篇工作来自斯坦福和Facebook AI,作者在BERT分类任务的精调阶段加入了对比学习的loss,在各个任务上都获得了很稳定的提升:

 

上图中CE表示交叉熵,SCL表示Supervised Contrastive Learning。实话说结果并不够惊艳,用对抗学习也差不多可以做到,让我惊喜的是在Few-shot上的效果:

 

N表示训练样本数量。可以看到N=20时QNLI上有10个点之多的提升。
下面就让我们来走近科学,看看SCL是个啥玩意儿叭~
论文题目:Supervised Contrastive Learning for Pre-trained Language Model Fine-tuning
论文链接:https://arxiv.org/abs/2011.01403
 
对比学习
对比学习的核心思想,就是让模型学习如何将正样本和其他负样本区别开来,抓住样本的本质特征,而不是把每个细节都考虑到。拿人来举例,假如有人让你凭空画一张一美元,你可能只画成这样[2]:

 

而如果给你一张美元照着临摹,可能还能画好看点,比如这样:

 

所以说我们记住的,不一定是像素级别的特征,而是更高维度的。在训练模型时,也不强求它们把所有信息都编码,只要细致到可以区分数据中的不同样本就可以。
 
如何实现呢?这个就体现在目标函数上:

 

 

Supervised Contrastive Learning
上文讲了自监督的对比学习主要是靠一个batch内的样本间相互对比,那有监督的数据如何更好利用呢?
 
作者就针对分类任务进行了研究。分类的核心思想就是把不同类别的样本划分开来,通常使用交叉熵作为损失函数。作者则提出了一个新的对比学习loss SCL,将同一类的样本互相作为正例,不同类别的作为负例。以此达到拉近类内样本、拉开类间距离的目的:

 

 

实验结果
除了开头展示的直接提升外,作者还进行了很多分析。从SST-2数据集的[CLS] embedding来看,通过CE(左)和SCL(右)损失训练出来的encoder对正负例的区分能力确实有不少差距:

 

同时在有噪声的训练数据上SCL鲁棒性会更强(T越高噪声越多):

 

总结
这篇文章目前正在投稿ICLR2021(都在arxiv上挂了还盲审啥。。),总体的改动比较简单,但对比学习的前景还是挺大的,同时加上SCL损失之后不仅对少样本的情况很有帮助,也能提升模型鲁棒性,相比于对抗学习的计算代价明显要小,还是比较实用的,一起立个flag,复现一波?
 
参考资料
[1]A Simple Framework for Contrastive Learning of Visual Representations: https://arxiv.org/abs/2002.05709
[2]Contrastive Self-Supervised Learning: https://ankeshanand.com/blog/2020/01/26/contrative-self-supervised-learning.html
[3]对比学习(Contrastive Learning)相关进展梳理: https://zhuanlan.zhihu.com/p/141141365
 
声明:文章收集于网络,版权归原作者所有,为传播信息而发,如有侵权,请联系小编删除,谢谢!
 
 

微信公众号

声明:本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,不为其版权负责。如果您发现网站上有侵犯您的知识产权的作品,请与我们取得联系,我们会及时修改或删除。

网友评论:

发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片
SEM推广服务

Copyright©2005-2028 Sykv.com 可思数据 版权所有    京ICP备14056871号

关于我们   免责声明   广告合作   版权声明   联系我们   原创投稿   网站地图  

可思数据 数据标注

扫码入群
扫码关注

微信公众号

返回顶部