CNN——架构上的一些数字
前面说了很多关于CNN的数值上的事,下面我们来看看网络架构。网络架构也是CNN的一个核心部分,由于CNN的特点是它的深度,所以深度模型的网络架构给了人们无数的想象,于是也有了无数的前辈创造了各种各样的模型。我们今天来看看那些经典的模型,不是从感性的角度上去观看,而是从理性的角度——去尝试计算一些具体的数字,让我们描绘出这些模型的一个简单轮廓。
我们的目标问题是ImageNet分类问题,那么我们主要关注哪些问题呢?
- 模型的深度,模型的核心层(卷积层、全连接层)的数量,这代表了模型的某种“能力”,基本上大家都有一个共识,那忽略优化问题的情况下,就是越深的模型在函数拟合方面效果越好。这里直接利用Caffe计算其中的layers_.size(),由于其中还包括data layer和loss layer,所以统计数会比实际的层数要多。
- 每层模型的参数数量,参数的总量,这代表了模型的复杂度。从机器学习的理论上讲,参数越多,模型的表达能力理论上也会“越强”。这里通过Caffe计算所有learnable_params的count总和表示。
- 模型前向的所需的内存量。也就是Caffe中计算的memory_used_变量值。
AlexNet
本文不是负责介绍历史的,所以不会花什么篇幅去聊故事。模型的prototxt来自:https://github.com/BVLC/caffe/blob/master/models/bvlc_alexnet/train_val.prototxt
VGGNet
VGGNet也是一个比较有代表性的网络,关于这个网络的“哲学”我们后面再开新贴去聊。利用论文和各处得到的信息,我们可以详细给出VGG19层模型的具体结构,参考的prototxt来自:https://gist.github.com/ksimonyan/3785162f95cd2d5fee77#file-readme-md
CS231n Convolutional Neural Networks for Visual Recognition对VGG模型的内存占用量和参数数量做过一个计算,仅作参考:
- INPUT: [224x224x3] memory: 224*224*3=150K weights: 0
- CONV3-64: [224x224x64] memory: 224*224*64=3.2M weights: (3*3*3)*64 = 1,728
- CONV3-64: [224x224x64] memory: 224*224*64=3.2M weights: (3*3*64)*64 = 36,864
- POOL2: [112x112x64] memory: 112*112*64=800K weights: 0
- CONV3-128: [112x112x128] memory: 112*112*128=1.6M weights: (3*3*64)*128 = 73,728
- CONV3-128: [112x112x128] memory: 112*112*128=1.6M weights: (3*3*128)*128 = 147,456
- POOL2: [56x56x128] memory: 56*56*128=400K weights: 0
- CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*128)*256 = 294,912
- CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*256)*256 = 589,824
- CONV3-256: [56x56x256] memory: 56*56*256=800K weights: (3*3*256)*256 = 589,824
- POOL2: [28x28x256] memory: 28*28*256=200K weights: 0
- CONV3-512: [28x28x512] memory: 28*28*512=400K weights: (3*3*256)*512 = 1,179,648
- CONV3-512: [28x28x512] memory: 28*28*512=400K weights: (3*3*512)*512 = 2,359,296
- CONV3-512: [28x28x512] memory: 28*28*512=400K weights: (3*3*512)*512 = 2,359,296
- POOL2: [14x14x512] memory: 14*14*512=100K weights: 0
- CONV3-512: [14x14x512] memory: 14*14*512=100K weights: (3*3*512)*512 = 2,359,296
- CONV3-512: [14x14x512] memory: 14*14*512=100K weights: (3*3*512)*512 = 2,359,296
- CONV3-512: [14x14x512] memory: 14*14*512=100K weights: (3*3*512)*512 = 2,359,296
- POOL2: [7x7x512] memory: 7*7*512=25K weights: 0
- FC: [1x1x4096] memory: 4096 weights: 7*7*512*4096 = 102,760,448
- FC: [1x1x4096] memory: 4096 weights: 4096*4096 = 16,777,216
- FC: [1x1x1000] memory: 1000 weights: 4096*1000 = 4,096,000
- TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)
- TOTAL params: 138M parameters
时间:2018-08-02 00:13 来源: 转发量:次
声明:本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,不为其版权负责。如果您发现网站上有侵犯您的知识产权的作品,请与我们取得联系,我们会及时修改或删除。
相关文章:
- [机器学习]2021年进入AI和ML领域之前需要了解的10件事
- [机器学习]Facebook新AI模型SEER实现自监督学习,LeCun大赞最有
- [机器学习]来自Facebook AI的多任务多模态的统一Transformer:向
- [机器学习]一文详解深度学习最常用的 10 个激活函数
- [机器学习]增量学习(Incremental Learning)小综述
- [机器学习]更深、更轻量级的Transformer!Facebook提出:DeLigh
- [机器学习]盘点近期大热对比学习模型:MoCo/SimCLR/BYOL/SimSi
- [机器学习]AAAI21最佳论文Informer:效果远超Transformer的长序列
- [机器学习]深度学习中的3个秘密:集成、知识蒸馏和蒸馏
- [机器学习]让研究人员绞尽脑汁的Transformer位置编码
相关推荐:
网友评论: