神经网络-全连接层(2)
这一回聊一下神经网络的反向传导算法问题。反向传导算法是一个比较复杂的算法,但是如果把它拆解开,其实每一个小步骤并不复杂。
在此之前需要先介绍一个概念,那就是模型训练目标。神经网络是一个用在监督学习上的模型,所谓的监督学习就是我们要提前知道输入和输出。那么我们的模型训练目标自然是希望模型在接收输入后,可以得到和我们提前知道的一样的输出。
但是怎么描述这个“一样”呢?现实中会有很多具体的表述方法。这里我们介绍并采用一种相对简单的方式,那就是二次损失函数。对于模型的输出y,和我们提前知道的理论输出t,有:
好了,下面我们定义一个双层神经网络,其中:
- 输入的数据是2维
- 第一层神经网络的输入也是2维,输出是4维,非线性部分采用sigmoid函数
- 第二层神经网络的输入也是4维,输出是1维,非线性部分采用sigmoid函数
下面的时间请大家想象这个神经网络……
不用想了,画了个比较丑的……
链式求导
下面的时间我们来推导神经网络的优化公式。推导公式本身不需要太多的数学知识,但是需要一些耐心,我们首先解决一个数据的推导,然后扩展到一批(batch)数据上。
我们的目标函数是这个损失函数Loss,优化方法还是之前提到的梯度下降法,那么我们就需要求出每一个参数的梯度,也就是:
第一层:
第二层:
如果我们能求出上面的17个梯度,后面我们就可以用负梯度乘以步长进行优化迭代了,说实话,直接求解这些确实有点难,这时候微分世界的一大神器就来了,那就是链式求导。我们把数据传递的过程再详细描述一下:
- 输入数据
- 第一层的线性部分输出
- 第一层的非线性部分输出
- 第二层的线性部分输出
- 第二层的非线性部分输出y
- 二次损失函数Loss
下面就按照这个顺序分步求导,对于上面的六个变量和模型的参数,我们根据每个分布的公式求出每个变量最近的输出的导数:
时间:2018-08-02 00:13 来源: 转发量:次
声明:本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,不为其版权负责。如果您发现网站上有侵犯您的知识产权的作品,请与我们取得联系,我们会及时修改或删除。
相关文章:
- [机器学习]2021年进入AI和ML领域之前需要了解的10件事
- [机器学习]Facebook新AI模型SEER实现自监督学习,LeCun大赞最有
- [机器学习]来自Facebook AI的多任务多模态的统一Transformer:向
- [机器学习]一文详解深度学习最常用的 10 个激活函数
- [机器学习]增量学习(Incremental Learning)小综述
- [机器学习]更深、更轻量级的Transformer!Facebook提出:DeLigh
- [机器学习]盘点近期大热对比学习模型:MoCo/SimCLR/BYOL/SimSi
- [机器学习]AAAI21最佳论文Informer:效果远超Transformer的长序列
- [机器学习]深度学习中的3个秘密:集成、知识蒸馏和蒸馏
- [机器学习]让研究人员绞尽脑汁的Transformer位置编码
相关推荐:
网友评论: