行业报告 AI展会 数据标注 标注供求
数据标注数据集
主页 > 机器学习 正文

机器学习进阶笔记之二 | 深入理解Neural Style

机器学习进阶笔记之二 | 深入理解Neural Style
引言
 
  TensorFlow是Google基于DistBelief进行研发的第二代人工智能学习系统,被广泛用于语音识别或图像识别等多项机器深度学习领域。其命名来源于本身的运行原理。Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow代表着张量从图象的一端流动到另一端计算过程,是将复杂的数据结构传输至人工智能神经网中进行分析和处理的过程。
 
  TensorFlow完全开源,任何人都可以使用。可在小到一部智能手机、大到数千台数据中心服务器的各种设备上运行。
 
  『机器学习进阶笔记』系列是将深入解析TensorFlow系统的技术实践,从零开始,由浅入深,与大家一起走上机器学习的进阶之路。
 
  前面《机器学习进阶笔记之一 | TensorFlow安装与入门 》 简单讲了下怎么在Ubuntu安装tensorflow gpu版本,也跑了下基于Mnist的比较基本的LR算法,但是Tensorflow可远远不止这些,它能做很多很有意思的东西,这篇文章主要针对Tensorflow利用CNN的方法对艺术照片做下Neural Style的相关工作。首先,我会详细解释下A Neural Algorithm of Artistic Style这篇paper是怎么做的,然后会结合一个开源的[Tensorflow的Neural Style版本][3]来领略下大神的风采。
 
A Neural Algorithm of Artistic Style
 
  在艺术领域,尤其是绘画,艺术家们通过创造不同的内容与风格,并相互交融影响来创立独立的视觉体验。如果给定两张图像,现在的技术手段,完全有能力让计算机识别出图像具体内容。而风格是一种很抽象的东西,在计算机的眼中,当然就是一些pixel,但人眼就能很有效地的辨别出不同画家不同的style,是否有一些更复杂的feature来构成,最开始学习DeepLearning的paper时,多层网络的实质其实就是找出更复杂、更内在的features,所以图像的style理论上可以通过多层网络来提取里面可能一些有意思的东西。而这篇文章就是利用卷积神经网络(利用pretrain的Pre-trained VGG network model)来分别做Content、Style的reconstruction,在合成时考虑content loss 与style loss的最小化(其实还包括去噪变化的的loss),这样合成出来的图像会保证在content 和style的重构上更准确。
A Neural Algorithm of Artistic Style
文章大纲
 
  这里是整个paper在neural style的工作流,理解这幅图对理解整篇paper的逻辑很关键,主要分为两部分:
  • Content Reconstruction: 上图中下面部分是Content Reconstruction对应于CNN中的a,b,c,d,e层,注意最开始标了Content Representations的部分不是原始图片(可以理解是给计算机比如分类器看的图片,因此如果可视化它,可能完全就不知道是什么内容),而是经过了Pre-trained之后的VGG network model的图像数据, 该model主要用来做object recognition, 这里主要用来生成图像的Content Representations。理解了这里,后面就比较容易了,经过五层卷积网络来做Content的重构,文章作者实验发现在前3层的Content Reconstruction效果比较好,d,e两层丢失了部分细节信息,保留了比较high-level的信息。
  • Style Reconstruction: Style的重构比较复杂,很难去模型化Style这个东西,Style Represention的生成也是和Content Representation的生成类似,也是由VGG network model去做的,不同点在于a,b,c,d,e的处理方式不同,Style Represention的Reconstruction是在CNN的不同的子集上来计算的,怎么说呢,它会分别构造conv1_1(a),[conv1_1, conv2_1](b),[conv1_1, conv2_1, conv3_1],[conv1_1, conv2_1, conv3_1,conv4_1],[conv1_1, conv2_1, conv3_1, conv4_1, conv5_1]。这样重构的Style 会在各个不同的尺度上更加匹配图像本身的style,忽略场景的全局信息。
 
methods
 
  理解了以上两点,剩下的就是建模的数据问题了,这里按Content和Style来分别计算loss,Content loss的method比较简单:
Content和Style来分别计算loss
  其中F^l是产生的Content Representation在第l层的数据表示,P^l是原始图片在第l层的数据表示,定义squared-error loss为两种特征表示的error。
 
  Style的loss基本也和Content loss一样,只不过要包含每一层输出的errors之和
Style的loss
Content loss
  其中A^l 是原始style图片在第l的数据表示,而G^l是产生的Style Representation在第l层的表示
 
  定义好loss之后就是采用优化方法来最小化模型loss(注意paper当中只有content loss和style loss),源码当中还涉及到降噪的loss:
content loss和style loss
  优化方法这里就不讲了,tensorflow有内置的如Adam这样的方法来处理
微信公众号

声明:本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,不为其版权负责。如果您发现网站上有侵犯您的知识产权的作品,请与我们取得联系,我们会及时修改或删除。

网友评论:

发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片
SEM推广服务

Copyright©2005-2028 Sykv.com 可思数据 版权所有    京ICP备14056871号

关于我们   免责声明   广告合作   版权声明   联系我们   原创投稿   网站地图  

可思数据 数据标注

扫码入群
扫码关注

微信公众号