60行代码徒手实现深度神经网络
01
准备数据集
采用的数据集是sklearn中的breast cancer数据集,30维特征,569个样本。训练前进行MinMax标准化缩放至[0,1]区间。按照75/25比例划分成训练集和验证集。
- # 获取数据集
- import numpy as np
- import pandas as pd
- from sklearn import datasets
- from sklearn import preprocessing
- from sklearn.model_selection import train_test_split
- breast = datasets.load_breast_cancer()
- scaler = preprocessing.MinMaxScaler()
- data = scaler.fit_transform(breast['data'])
- target = breast['target']
- X_train,X_test,y_train,y_test = train_test_split(data,target)
02
模型结构图
03
正反传播公式
04
NN实现代码
- import numpy as np
- import pandas as pd
- #定义激活函数
- ReLu = lambda z:np.maximum(0.0,z)
- d_ReLu = lambda z:np.where(z<0,0,1)
- LeakyReLu = lambda z:np.maximum(0.01*z,z)
- d_LeakyReLu = lambda z:np.where(z<0,0.01,1)
- Sigmoid = lambda z:1/(1+np.exp(-z))
- d_Sigmoid = lambda z: Sigmoid(z)*(1-Sigmoid(z)) #d_Sigmoid = a(1-a)
- Tanh = np.tanh
- d_Tanh = lambda z:1 - Tanh(z)**2 #d_Tanh = 1 - a**2
- class NNClassifier(object):
- def __init__(self,n = [np.nan,5,5,1],alpha = 0.1,ITERNUM = 50000, gfunc = 'ReLu'):
- self.n = n #各层节点数
- self.gfunc = gfunc #隐藏层激活函数
- self.alpha,self.ITERNUM = alpha,ITERNUM
- self.dfJ = pd.DataFrame(data = np.zeros((ITERNUM,1)),columns = ['J'])
- self.W,self.b = np.nan,np.nan
- # 确定各层激活函数
- self.g = [eval(self.gfunc) for i in range(len(n))];
- self.g[-1] = Sigmoid;self.g[0] = np.nan
- # 确定隐藏层激活函数的导数
- self.d_gfunc = eval('d_' + self.gfunc)
- def fit(self,X_train,y_train):
- X,Y = X_train.T,y_train.reshape(1,-1)
- m = X.shape[1] #样本个数
- n = self.n; n[0] = X.shape[0] # 各层节点数量
- # 节点值和参数初始化
- A = [np.zeros((ni,m)) for ni in n];A[0] = X #各层节点输出值初始化
- Z = [np.zeros((ni,m)) for ni in n];Z[0] = np.nan #各层节点中间值初始化
- W = [np.nan] + [np.random.randn(n[i],n[i-1]) * 0.01 for i in range(1,len(n))] #各层系数参数
- b = [np.zeros((ni,1)) for ni in n];b[0] = np.nan #n各层偏置参数
- # 导数初始化
- dA = [np.zeros(Ai.shape) for Ai in A]
- dZ = [np.zeros(Ai.shape) for Ai in A]
- dW = [np.zeros(Wi.shape) if isinstance(Wi,np.ndarray) else np.nan for Wi in W]
- db = [np.zeros(bi.shape) if isinstance(bi,np.ndarray) else np.nan for bi in b]
- for k in range(self.ITERNUM):
- # ---------正向传播 ----------
- for i in range(1,len(n)):
- Z[i] = np.dot(W[i],A[i-1]) + b[i]
- A[i] = self.g[i](Z[i])
- J = (1/m) * np.sum(- Y*np.log(A[len(n)-1]) -(1-Y)*np.log(1-A[len(n)-1]))
- self.dfJ.loc[k]['J']= J
- # ----------反向传播 ---------
- hmax = len(n) - 1
- dA[hmax] = 1/m*(-Y/A[hmax] + (1-Y)/(1-A[hmax]))
- dZ[hmax] = 1/m*(A[hmax]-Y)
- dW[hmax] = np.dot(dZ[hmax],A[hmax-1].T)
- db[hmax] = np.dot(dZ[hmax],np.ones((m,1)))
- for i in range(len(n)-2,0,-1):
- dA[i] = np.dot(W[i+1].T,dZ[i+1])
- dZ[i] = dA[i]* self.d_gfunc(Z[i])
- dW[i] = np.dot(dZ[i],A[i-1].T)
- db[i] = np.dot(dZ[i],np.ones((m,1)))
- #-----------梯度下降 ---------
- for i in range(1,len(n)):
- W[i] = W[i] - self.alpha*dW[i]
- b[i] = b[i] - self.alpha*db[i]
- # 显示进度
- if (k+1)%1000 == 0:
- print('progress rate:{}/{}'.format(k+1,self.ITERNUM),end = '\r')
- self.W,self.b = W,b
- def predict_prob(self,X_test):
- # ---------正向传播 ----------
- W,b = self.W,self.b
- Ai = X_test.T
- for i in range(1,len(self.n)):
- Zi = np.dot(W[i],Ai) + b[i]
- Ai = self.g[i](Zi)
- return(Ai.reshape(-1))
- def predict(self,X_test):
- Y_prob = self.predict_prob(X_test)
- Y_test = Y_prob.copy()
- Y_test[Y_prob>=0.5] = 1
- Y_test[Y_prob< 0.5] = 0
- return(Y_test)
05
单隐层神经网络
设置1个隐藏层,隐藏层节点数为5,隐藏层使用Sigmoid激活函数。
- # 采用Sigmoid激活函数
- NN = NNClassifier(n = [np.nan,5,1],alpha = 0.02,
- ITERNUM = 200000, gfunc = 'Sigmoid')
- NN.fit(X_train,y_train)
- # 绘制目标函数迭代曲线
- %matplotlib inline
- NN.dfJ.plot(figsize = (12,8))
- # 测试在验证集的auc得分
- from sklearn.metrics import roc_auc_score
- Y_prob = NN.predict_prob(X_test)
- roc_auc_score(list(y_test),list(Y_prob))
隐藏层使用Tanh激活函数。
- # 采用 Tanh激活函数
- NN = NNClassifier(n = [np.nan,5,1],alpha = 0.02,
- ITERNUM = 200000, gfunc = 'Tanh')
- NN.fit(X_train,y_train)
- # 绘制目标函数迭代曲线
- %matplotlib inline
- NN.dfJ.plot(figsize = (12,8))
- # 测试在验证集的auc得分
- from sklearn.metrics import roc_auc_score
- Y_prob = NN.predict_prob(X_test)
- roc_auc_score(list(y_test),list(Y_prob))
隐藏层使用ReLu激活函数。
- # 采用 ReLu激活函数
- NN = NNClassifier(n = [np.nan,5,1],alpha = 0.02,
- ITERNUM = 200000, gfunc = 'ReLu')
- NN.fit(X_train,y_train)
- # 绘制目标函数迭代曲线
- %matplotlib inline
- NN.dfJ.plot(figsize = (12,8))
- # 测试在验证集的auc得分
- from sklearn.metrics import roc_auc_score
- Y_prob = NN.predict_prob(X_test)
- roc_auc_score(list(y_test),list(Y_prob))
隐藏层使用LeakyReLu激活函数。
- # 采用 LeakyReLu激活函数
- NN = NNClassifier(n = [np.nan,5,1],alpha = 0.02,
- ITERNUM = 200000, gfunc = 'LeakyReLu')
- NN.fit(X_train,y_train)
- # 绘制目标函数迭代曲线
- %matplotlib inline
- NN.dfJ.plot(figsize = (12,8))
- # 测试在验证集的auc得分
- from sklearn.metrics import roc_auc_score
- Y_prob = NN.predict_prob(X_test)
- roc_auc_score(list(y_test),list(Y_prob))
以上试验似乎表明,在当前的数据集上,隐藏层采用ReLu激活函数是一个最好的选择,AUC最高得分为0.99958。
06
双隐层神经网络
设置2个隐藏层,隐藏层节点数都为5,隐藏层都使用ReLu激活函数。
- # 设置两个隐藏层,采用ReLu激活函数
- NN = NNClassifier(n = [np.nan,5,5,1],alpha = 0.02,
- ITERNUM = 200000, gfunc = 'ReLu')
- NN.fit(X_train,y_train)
- # 绘制目标函数迭代曲线
- %matplotlib inline
- NN.dfJ.plot(figsize = (12,8))
- # 测试在验证集的auc得分
- from sklearn.metrics import roc_auc_score
- Y_prob = NN.predict_prob(X_test)
- roc_auc_score(list(y_test),list(Y_prob))
AUC得分0.99874比采用单隐藏层的最优得分0.99958有所降低,可能是模型复杂度过高,我们尝试减少隐藏层节点的个数至3以降低模型复杂度。
- # 双隐藏层,隐藏层节点数为3
- NN = NNClassifier(n = [np.nan,3,3,1],alpha = 0.02,
- ITERNUM = 200000, gfunc = 'ReLu')
- NN.fit(X_train,y_train)
- # 绘制目标函数迭代曲线
- %matplotlib inline
- NN.dfJ.plot(figsize = (12,8))
- # 测试在验证集的auc得分
- from sklearn.metrics import roc_auc_score
- Y_prob = NN.predict_prob(X_test)
- roc_auc_score(list(y_test),list(Y_prob))
AUC得分0.99979,又有所提高。
和sklearn中自带的神经网络分类器进行对比。
- # 和sklearn中的模型对比
- from sklearn.neural_network import MLPClassifier
- # 第一隐藏层神经元个数为3,第二隐藏层神经元个数为3
- MLPClf = MLPClassifier(hidden_layer_sizes=(3,3),max_iter=200000,activation='relu')
- MLPClf.fit(X_train,y_train)
- # 绘制目标函数迭代曲线
- dfJ = pd.DataFrame(data = np.array(MLPClf.loss_curve_),columns = ['J'])
- dfJ.plot(figsize = (12,8))
- # 测试在验证集的auc得分
- from sklearn.metrics import roc_auc_score
- Y_prob = MLPClf.predict_proba(X_test)[:,1]
- roc_auc_score(list(y_test),list(Y_prob))
以上试验表明,针对当前数据数据集,选择ReLu激活函数,采用双隐藏层,每个隐藏层节点数设置为3是一个不错的选择,AUC得分为0.99979。该得分高于采用CV交叉验证优化超参数后的逻辑回归模型的0.99897的AUC得分。
时间:2019-07-27 16:17 来源:可思数据 转发量:次
声明:本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,不为其版权负责。如果您发现网站上有侵犯您的知识产权的作品,请与我们取得联系,我们会及时修改或删除。
相关文章:
相关推荐:
网友评论: