行业报告 AI展会 数据标注 标注供求
数据标注数据集
主页 > 机器学习 正文

深度神经网络可辨别Deepfakes伪造的照片

在某位开发者打开了 Deepfakes 的潘多拉魔盒之后,以假乱真的人工智能伪造照片技术,已经引发了各界的广泛争论。好消息是,加州大学河滨分校 Amit K. Roy-Chowdhury 教授带领的一支研究团队,已经开发出了一套高水准的深度神经网络,能够分析一张照片是否经由 DeepFakes 伪造。

(图自:加州大学河滨分校,via New Atlas)

研究期间,团队向他们的深度神经网络投喂了大量的篡改和非篡改照片数据集,并对其作出相应的计算机标记。

自被篡改的图片中,团队突出显示了被数字化添加到镜头中的对象的边界像素。此前已有研究人员证实,伪造照片的不寻常物体边界,会较真实物体更加平滑或有所不同。

虽然人眼不一定能够检测到这些差异,但计算机可以对异常像素进行逐个的检查,然后将标记的数据集输入深度神经网络。

这是一套模拟人脑的松散建模算法,旨在识别原始数据中的模式。基于此,该深度神经网络将学会识别数字添加进去的图像指示边界。

当它随后显示来自数据集外部、此前没见过的照片时,就能够在很大程度上辨别出经过 Deepfakes 伪造的照片。

需要指出的是,尽管这套系统目前仅适用于静态照片,但团队正在努力将其应用于视频的鉴别。毕竟视频的本质,就是一帧帧的连续图像。

当然,在投入实际试用后,这套深度神经网络也可能永远都做不到 100% 的识别准确率,毕竟训练数据及都是被研究人员有意标识过的。

有关这项研究的详情,已经发表在近日出版的《IEEE Transactions on Image Processing》影像处理期刊上。原标题为:

《Hybrid LSTM and Encoder–Decoder Architecture for Detection of Image Forgeries》


微信公众号

声明:本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,不为其版权负责。如果您发现网站上有侵犯您的知识产权的作品,请与我们取得联系,我们会及时修改或删除。

网友评论:

发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片
SEM推广服务

Copyright©2005-2028 Sykv.com 可思数据 版权所有    京ICP备14056871号

关于我们   免责声明   广告合作   版权声明   联系我们   原创投稿   网站地图  

可思数据 数据标注

扫码入群
扫码关注

微信公众号

返回顶部