行业报告 AI展会 数据标注 标注供求
数据标注数据集
主页 > 机器学习 正文

机器学习的不同类型


有监督的和无监督的主要是由许多机器学习工程师和数据极客使用。

强化学习对于解决问题非常强大且复杂。

有监督学习

我们知道,机器学习以数据为输入,我们称这个数据为训练数据。

训练数据包括输入和标签(目标)。

什么是输入和标签(目标)?例如,两个数字相加a=5,b=6结果=11,输入为5,6,目标为11。

机器学习的不同类型
 
 

我们首先用大量的训练数据(输入和目标)来训练模型。
然后利用新数据和我们之间获得的逻辑来预测输出。

(注:我们不能得到准确的6作为答案,我们可以得到接近6的值,基于训练数据和算法)

这个过程被称为监督学习,它非常快速和准确。

机器学习的不同类型
 
 

回归:这是我们需要预测连续响应值的一类问题(例如:上面我们预测的数字可以从-∞变化到+∞)

一些示例

  • 一个城市的房价是多少?
  • 股票的价值是多少?
  • 一场板球比赛可以有多少分?

等等,我们可以预测很多事情。

分类:这是一类我们预测类别响应值的问题,数据可以被分成特定的“类”(例如:我们预测一组值中的一个值)。

一些例子是:

  • 这封邮件是不是垃圾邮件?
  • 今天会下雨吗?
  • 这张照片到底是不是一只猫?

基本上,“是/否”类型的问题被称为二元分类。

其他例子包括:

  • 这封邮件是垃圾邮件、重要邮件还是促销邮件?
  • 这幅画是猫、狗还是老虎?

这种类型称为多类分类。

这是最后一张图片。

机器学习的不同类型
 
 

这就是监督学习的全部内容。

无监督学习

训练数据不包括目标,所以我们不告诉系统去哪里,系统必须从我们给出的数据中了解自己。

机器学习的不同类型
 
 

这里的训练数据不是结构化的(包含噪声数据、未知数据等)。

例如:来自不同页面的随机文章

机器学习的不同类型
 
 

无监督学习也有不同的类型,比如聚类和异常检测(聚类非常有名)。

机器学习的不同类型
 
 

聚类:这是一种把相似的东西聚在一起的问题。
有点类似于多类分类,但这里我们不提供标签,系统从数据本身理解和聚类数据。

一些例子是:

  • 给定新闻文章,将其聚合成不同类型的新闻
  • 给定一组tweets,根据tweets的内容进行聚类
  • 给定一组图像,将它们聚成不同的对象
机器学习的不同类型
 
 

无监督学习是一种较难实现的学习方法,其应用范围不及有监督学习。

我想在另一篇文章中介绍强化学习,因为它很激烈。 所以

这就是这个文章的全部内容,希望你能有所了解。

微信公众号

声明:本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,不为其版权负责。如果您发现网站上有侵犯您的知识产权的作品,请与我们取得联系,我们会及时修改或删除。

网友评论:

发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片
SEM推广服务

Copyright©2005-2028 Sykv.com 可思数据 版权所有    京ICP备14056871号

关于我们   免责声明   广告合作   版权声明   联系我们   原创投稿   网站地图  

可思数据 数据标注

扫码入群
扫码关注

微信公众号

返回顶部