谷歌开源机器学习数据集,可在TensorFlow直接调用
吴恩达说过,公共数据集为机器学习研究这枚火箭提供了动力,但将这些数据集放入机器学习管道就已经够难的了。编写供下载的一次性脚本,准备他们要用的源格式和复杂性不一的数据集,相信这种痛苦每个程序员都有过切身体会。
但现在,你再也不会被这种痛苦困扰了。谷歌今天开源了一个机器学习数据集,可在 TensorFlow 直接调用,这为开发人员省去了不少麻烦。
照例先放数据集:
GitHub:https://github.com/tensorflow/datasets
今天,我们很高兴地推出 TensorFlow 数据集,它将作为tf.data.Datasets和 NumPy 数组向公众开放。它可以完成从获取源数据,到准备磁盘上的通用格式的所有琐碎工作,并使用tf.data API构建高性能输入管道,这些管道支持 TensorFlow 2.0,并可与 tf.keras 模型一起使用。我们推出了 29 个流行的研究数据集,如 MNIST、Street View House Numbers、包含 10 亿数据的语言模型基准和大型电影评论数据集,并将在未来几个月推出更多数据集;我们也希望你可以加入并贡献数据集。
tl;dr
# Install: pip install tensorflow-datasets
import tensorflow_datasets as tfds
mnist_data = tfds.load("mnist")
mnist_train, mnist_test = mnist_data["train"], mnist_data["test"]
assert isinstance(mnist_train, tf.data.Dataset)
在 Colab notebook 上试试 tfds。
tfds.load和DatasetBuilder
每个数据集都作为 DatasetBuilder 公开,它会告诉你:
从哪里下载数据以及如何提取数据并将其写入标准格式(DatasetBuilder.download_and_prepare)。
如何从磁盘加载它(DatasetBuilder.as_dataset)。
以及有关数据集的所有信息,例如所有要素的名称、类型和形状,每个拆分中的记录数、源 URL、数据集或相关论文的引用等(DatasetBuilder.info)。
你可以直接对所有 DatasetBuilders 进行实例化或使用 tfds.builder 字符串获取:
import tensorflow_datasets as tfds
# Fetch the dataset directly
mnist = tfds.image.MNIST()
# or by string name
mnist = tfds.builder('mnist')
# Describe the dataset with DatasetInfo
assert mnist.info.features['image'].shape == (28, 28, 1)
assert mnist.info.features['label'].num_classes == 10
assert mnist.info.splits['train'].num_examples == 60000
# Download the data, prepare it, and write it to disk
mnist.download_and_prepare()
# Load data from disk as tf.data.Datasets
datasets = mnist.as_dataset()
train_dataset, test_dataset = datasets['train'], datasets['test']
assert isinstance(train_dataset, tf.data.Dataset)
# And convert the Dataset to NumPy arrays if you'd like
for example in tfds.as_numpy(train_dataset):
image, label = example['image'], example['label']
assert isinstance(image, np.array)
as_dataset()接受一个 batch_size 参数,它将提供批量示例,而不是一次一个示例。对于适合内存的小型数据集,你可以用 batch_size = -1 立即获取整个数据集作为 tf.Tensor。使用tfds.as_numpy()可以轻松地将所有 tf.data.Datasets 转换为 NumPy 数组的参数。
为方便起见,你可以使用tfds.load执行以上所有操作,tfds.load 按名称获取 DatasetBuilder,调用 download_and_prepare()以及 as_dataset()。
import tensorflow_datasets as tfds
datasets = tfds.load("mnist")
train_dataset, test_dataset = datasets["train"], datasets["test"]
assert isinstance(train_dataset, tf.data.Dataset)
你也可以通过传递 with_info = True 轻松地从 tfds.load 获取DatasetInfo 对象。有关所有选项,请参阅API 文档。
数据集版本管理
每个数据集都是版本化的(builder.info.version),你大可放心,数据不会随意发生变化,且结果是可重现的。目前,我们保证如果数据发生变化,将增加版本。
请注意,尽管目前我们保证给定同一版本下的数据值和拆分是相同的,但不保证对同一版本的记录进行排序。
数据集配置
具有不同变体的数据集使用命名的 BuilderConfigs 进行配置。例如,大型电影评论数据集 (tfds.text.IMDBReviews ) 不同的输入可能有不同的编码(例如,纯文本、字符编码或子词编码)。内置配置与数据集文档一起列出,可以通过字符串进行寻址,也可以传入你自己的配置。
# See the built-in configs
configs = tfds.text.IMDBReviews.builder_configs
assert "bytes" in configs
# Address a built-in config with tfds.builder
imdb = tfds.builder("imdb_reviews/bytes")
# or when constructing the builder directly
imdb = tfds.text.IMDBReviews(config="bytes")
# or use your own custom configuration
my_encoder = tfds.features.text.ByteTextEncoder(additional_tokens=['hello'])
my_config = tfds.text.IMDBReviewsConfig(
name="my_config",
version="1.0.0",
text_encoder_config=tfds.features.text.TextEncoderConfig(encoder=my_encoder),
)
imdb = tfds.text.IMDBReviews(config=my_config)
请参阅有关添加数据集的文档中有关数据集配置的部分。
文本数据集和词汇表
由于编码和词汇文件不同,文本数据集通常很难处理。tensorflow-datasets 让这一过程变得更简单。它包含许多文本任务,包括三种 TextEncoders,且都支持 Unicode:
ByteTextEncoder 用于字节 / 字符级编码
TokenTextEncoder 用于基于词汇表文件的单词级编码
SubwordTextEncoder 用于子词级编码(以及针对特定文本语料库创建子词词汇的能力),可以字节级回退,因此它是完全可逆的。例如,“hello world”可以拆分为 [“he”,“llo”,“”,“wor”,“ld”],然后进行整数编码。子词是词级和字节级编码之间的媒介,在一些自然语言研究项目中很受欢迎。
可以通过 DatasetInfo 访问编码器及其词汇表大小:
imdb = tfds.builder("imdb_reviews/subwords8k")
# Get the TextEncoder from DatasetInfo
encoder = imdb.info.features["text"].encoder
assert isinstance(encoder, tfds.features.text.SubwordTextEncoder)
# Encode, decode
ids = encoder.encode("Hello world")
assert encoder.decode(ids) == "Hello world"
# Get the vocabulary size
vocab_size = encoder.vocab_size
TensorFlow 和 TensorFlow 数据集都将在未来进一步改进文本支持。
入门
我们的文档站点是开始使用 tensorflow 数据集的最佳位置。以下是一些入门指南:
数据集页面
API 文档
Colab 教程
如何添加数据集
GitHub
我们将在未来几个月内添加更多数据集,并希望社区能够加入。如果你需要什么数据集,请在 GitHub 创建话题,我们将对下一步应添加的数据集进行投票,讨论实施细节或寻求帮助。非常欢迎 Pull Requests!人人献出一点数据集,让社区变得更美好,把你的数据集贡献给 TFDS 声名大噪吧!
当获取数据变得简单,我们就能快乐地建模!
原文链接:
https://medium.com/tensorflow/introducing-tensorflow-datasets-c7f01f7e19f3
时间:2019-03-01 23:23 来源: 转发量:次
声明:本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,不为其版权负责。如果您发现网站上有侵犯您的知识产权的作品,请与我们取得联系,我们会及时修改或删除。
相关文章:
- [机器学习]堪比当年的LSTM,Transformer引燃机器学习圈:它是
- [机器学习]论机器学习领域的内卷:不读PhD,我配不配找工
- [机器学习]机器学习基础图表:概念、原理、历史、趋势和算法
- [机器学习]分析了 600 多种烘焙配方,机器学习开发出新品
- [机器学习]2021年的机器学习生命周期
- [机器学习]物联网和机器学习促进企业业务发展的5种方式
- [机器学习]机器学习中分类任务的常用评估指标和Python代码实现
- [机器学习]机器学习和深度学习的区别是什么?
- [机器学习]堪比当年的LSTM,Transformer引燃机器学习圈:它是
- [机器学习]年终总结:2021年五大人工智能(AI)和机器学习(ML)发展趋势
相关推荐:
网友评论: