Spark名词解释及关系
随着对spark的业务更深入,对spark的了解也越多,然而目前还处于知道的越多,不知道的更多阶段,当然这也是成长最快的阶段。这篇文章用作总结最近收集及理解的spark相关概念及其关系。
名词
driver
driver物理层面是指输入提交spark命令的启动程序,逻辑层面是负责调度spark运行流程包括向master申请资源,拆解任务,代码层面就是sparkcontext。
worker
worker指可以运行的物理节点。
executor
executor指执行spark任务的处理程序,对java而言就是拥有一个jvm的进程。一个worker节点可以运行多个executor,只要有足够的资源。
job
job是指一次action,rdd(rdd在这里就不解释了)操作分成两大类型,一类是transform,一类是action,当涉及到action的时候,spark就会把上次action之后到本次action的所有rdd操作用一个job完成。
stage
stage是指一次shuffle,rdd在操作的时候分为宽依赖(shuffle dependency)和窄依赖(narraw dependency),如下图所示。而宽依赖就是指shuffle。
应某人要求再解释一下什么是窄依赖,就是父rdd的每个分区都只作用在一个子rdd的分区中,原话是这么说的 each partition of the parent RDD is used by at most one partition of the child RDD。
task
task是spark的最小执行单位,一般而言执行一个partition的操作就是一个task,关于partition的概念,这里稍微解释一下。
spark的默认分区数是2,并且最小分区也是2,改变分区数的方式有很多,大概有三个阶段
1.启动阶段,通过 spark.default.parallelism 来初始化默认分区数
2.生成rdd阶段,可通过参数配置
3.rdd操作阶段,默认继承父rdd的partition数,最终结果受shuffle操作和非shuffle操作的影响,不同操作的结果partition数不同
名词关系
物理关系
官网给出的spark运行架构图
逻辑关系
下图是总结的逻辑关系图,如果有不对之处,还望提醒。
文章来源:36大数据
时间:2018-10-09 22:52 来源: 转发量:次
声明:本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,不为其版权负责。如果您发现网站上有侵犯您的知识产权的作品,请与我们取得联系,我们会及时修改或删除。
相关文章:
- [数据挖掘]Spark 迁移到 K8S 在有赞的实践与经验
- [数据挖掘]Spark Operator 初体验
- [数据挖掘]如何实现Spark on Kubernetes?
- [数据挖掘]Spark SQL 物化视图技术原理与实践
- [数据挖掘]Spark on K8S 的最佳实践和需要注意的坑
- [数据挖掘]Spark 3.0重磅发布!开发近两年,流、Python、SQL重
- [数据挖掘]Spark 3.0开发近两年终于发布,流、Python、SQL重大
- [数据挖掘]Apache Spark 3.0.0 正式版终于发布了,重要特性全面
- [数据挖掘]Spark 3.0 自适应查询优化介绍,在运行时加速 Sp
- [数据挖掘]Flink SQL vs Spark SQL
相关推荐:
网友评论: