基于 Python 的 Scrapy 爬虫入门:代码详解
作者:大虫
一、内容分析
接下来创建一个爬虫项目,以 图虫网 为例抓取里面的图片。在顶部菜单“发现” “标签”里面是对各种图片的分类,点击一个标签,比如“美女”,网页的链接为:https://tuchong.com/tags/美女/,我们以此作为爬虫入口,分析一下该页面:
打开页面后出现一个个的图集,点击图集可全屏浏览图片,向下滚动页面会出现更多的图集,没有页码翻页的设置。Chrome右键“检查元素”打开开发者工具,检查页面源码,内容部分如下:
<div class="content"> <div class="widget-gallery"> <ul class="pagelist-wrapper"> <li class="gallery-item...
可以判断每一个li.gallery-item是一个图集的入口,存放在ul.pagelist-wrapper下,div.widget-gallery是一个容器,如果使用 xpath 选取应该是://div[@class=”widget-gallery”]/ul/li,按照一般页面的逻辑,在li.gallery-item下面找到对应的链接地址,再往下深入一层页面抓取图片。
但是如果用类似 Postman 的HTTP调试工具请求该页面,得到的内容是:
<div class="content"> <div class="widget-gallery"></div> </div>
也就是并没有实际的图集内容,因此可以断定页面使用了Ajax请求,只有在浏览器载入页面时才会请求图集内容并加入div.widget-gallery中,通过开发者工具查看XHR请求地址为:
https://tuchong.com/rest/tags/美女/posts?page=1&count=20&order=weekly&before_timestamp=
参数很简单,page是页码,count是每页图集数量,order是排序,before_timestamp为空,图虫因为是推送内容式的网站,因此before_timestamp应该是一个时间值,不同的时间会显示不同的内容,这里我们把它丢弃,不考虑时间直接从最新的页面向前抓取。
请求结果为JSON格式内容,降低了抓取难度,结果如下:
{ "postList": [ { "post_id": "15624611", "type": "multi-photo", "url": "https://weishexi.tuchong.com/15624611/", "site_id": "443122", "author_id": "443122", "published_at": "2017-10-28 18:01:03", "excerpt": "10月18日", "favorites": 4052, "comments": 353, "rewardable": true, "parent_comments": "165", "rewards": "2", "views": 52709, "title": "微风不燥 秋意正好", "image_count": 15, "images": [ { "img_id": 11585752, "user_id": 443122, "title": "", "excerpt": "", "width": 5016, "height": 3840 }, { "img_id": 11585737, "user_id": 443122, "title": "", "excerpt": "", "width": 3840, "height": 5760 }, ... ], "title_image": null, "tags": [ { "tag_id": 131, "type": "subject", "tag_name": "人像", "event_type": "", "vote": "" }, { "tag_id": 564, "type": "subject", "tag_name": "美女", "event_type": "", "vote": "" } ], "favorite_list_prefix": [], "reward_list_prefix": [], "comment_list_prefix": [], "cover_image_src": "https://photo.tuchong.com/443122/g/11585752.webp", "is_favorite": false } ], "siteList": {...}, "following": false, "coverUrl": "https://photo.tuchong.com/443122/ft640/11585752.webp", "tag_name": "美女", "tag_id": "564", "url": "https://tuchong.com/tags/%E7%BE%8E%E5%A5%B3/", "more": true, "result": "SUCCESS" }
根据属性名称很容易知道对应的内容含义,这里我们只需关心 postlist 这个属性,它对应的一个数组元素便是一个图集,图集元素中有几项属性我们需要用到:
- url:单个图集浏览的页面地址
- post_id:图集编号,在网站中应该是唯一的,可以用来判断是否已经抓取过该内容
- site_id:作者站点编号 ,构建图片来源链接要用到
- title:标题
- excerpt:摘要文字
- type:图集类型,目前发现两种,一种multi-photo是纯照片,一种text是文字与图片混合的文章式页面,两种内容结构不同,需要不同的抓取方式,本例中只抓取纯照片类型,text类型直接丢弃
- tags:图集标签,有多个
- image_count:图片数量
- images:图片列表,它是一个对象数组,每个对象中包含一个img_id属性需要用到
根据图片浏览页面分析,基本上图片的地址都是这种格式: https://photo.tuchong.com/{site_id}/f/{img_id}.jpg ,很容易通过上面的信息合成。
二、创建项目
- 进入cmder命令行工具,输入workon scrapy 进入之前建立的虚拟环境,此时命令行提示符前会出现(Scrapy) 标识,标识处于该虚拟环境中,相关的路径都会添加到PATH环境变量中便于开发及使用。
- 输入 scrapy startproject tuchong 创建项目 tuchong
- 进入项目主目录,输入 scrapy genspider photo tuchong.com 创建一个爬虫名称叫 photo (不能与项目同名),爬取 tuchong.com 域名(这个需要修改,此处先输个大概地址),的一个项目内可以包含多个爬虫
经过以上步骤,项目自动建立了一些文件及设置,目录结构如下:
(PROJECT) │ scrapy.cfg │ └─tuchong │ items.py │ middlewares.py │ pipelines.py │ settings.py │ __init__.py │ ├─spiders │ │ photo.py │ │ __init__.py │ │ │ └─__pycache__ │ __init__.cpython-36.pyc │ └─__pycache__ settings.cpython-36.pyc __init__.cpython-36.pyc
- scrapy.cfg:基础设置
- items.py:抓取条目的结构定义
- middlewares.py:中间件定义,此例中无需改动
- pipelines.py:管道定义,用于抓取数据后的处理
- settings.py:全局设置
- spiders\photo.py:爬虫主体,定义如何抓取需要的数据
三、主要代码
items.py 中创建一个TuchongItem类并定义需要的属性,属性继承自 scrapy.Field 值可以是字符、数字或者列表或字典等等:
import scrapy class TuchongItem(scrapy.Item): post_id = scrapy.Field() site_id = scrapy.Field() title = scrapy.Field() type = scrapy.Field() url = scrapy.Field() image_count = scrapy.Field() images = scrapy.Field() tags = scrapy.Field() excerpt = scrapy.Field() ...
这些属性的值将在爬虫主体中赋予。
spiders\photo.py 这个文件是通过命令 scrapy genspider photo tuchong.com 自动创建的,里面的初始内容如下:
import scrapy class PhotoSpider(scrapy.Spider): name = 'photo' allowed_domains = ['tuchong.com'] start_urls = ['http://tuchong.com/'] def parse(self, response): pass
爬虫名 name,允许的域名 allowed_domains(如果链接不属于此域名将丢弃,允许多个) ,起始地址 start_urls 将从这里定义的地址抓取(允许多个)
函数 parse 是处理请求内容的默认回调函数,参数 response 为请求内容,页面内容文本保存在 response.body 中,我们需要对默认代码稍加修改,让其满足多页面循环发送请求,这需要重载 start_requests 函数,通过循环语句构建多页的链接请求,修改后代码如下:
import scrapy, json from ..items import TuchongItem class PhotoSpider(scrapy.Spider): name = 'photo' # allowed_domains = ['tuchong.com'] # start_urls = ['http://tuchong.com/'] def start_requests(self): url = 'https://tuchong.com/rest/tags/%s/posts?page=%d&count=20&order=weekly'; # 抓取10个页面,每页20个图集 # 指定 parse 作为回调函数并返回 Requests 请求对象 for page in range(1, 11): yield scrapy.Request(url=url % ('美女', page), callback=self.parse) # 回调函数,处理抓取内容填充 TuchongItem 属性 def parse(self, response): body = json.loads(response.body_as_unicode()) items = [] for post in body['postList']: item = TuchongItem() item['type'] = post['type'] item['post_id'] = post['post_id'] item['site_id'] = post['site_id'] item['title'] = post['title'] item['url'] = post['url'] item['excerpt'] = post['excerpt'] item['image_count'] = int(post['image_count']) item['images'] = {} # 将 images 处理成 {img_id: img_url} 对象数组 for img in post.get('images', ''): img_id = img['img_id'] url = 'https://photo.tuchong.com/%s/f/%s.jpg' % (item['site_id'], img_id) item['images'][img_id] = url item['tags'] = [] # 将 tags 处理成 tag_name 数组 for tag in post.get('tags', ''): item['tags'].append(tag['tag_name']) items.append(item) return items
经过这些步骤,抓取的数据将被保存在 TuchongItem 类中,作为结构化的数据便于处理及保存。
前面说过,并不是所有抓取的条目都需要,例如本例中我们只需要 type=”multi_photo 类型的图集,并且图片太少的也不需要,这些抓取条目的筛选操作以及如何保存需要在pipelines.py中处理,该文件中默认已创建类 TuchongPipeline 并重载了 process_item函数,通过修改该函数只返回那些符合条件的 item,代码如下:
... def process_item(self, item, spider): # 不符合条件触发 scrapy.exceptions.DropItem 异常,符合条件的输出地址 if int(item['image_count']) < 3: raise DropItem("美女太少: " + item['url']) elif item['type'] != 'multi-photo': raise DropItem("格式不对: " + + item['url']) else: print(item['url']) return item ...
当然如果不用管道直接在 parse 中处理也是一样的,只不过这样结构更清晰一些,而且还有功能更多的FilePipelines和ImagePipelines可供使用,process_item将在每一个条目抓取后触发,同时还有 open_spider 及 close_spider 函数可以重载,用于处理爬虫打开及关闭时的动作。
注意:管道需要在项目中注册才能使用,在 settings.py 中添加:
ITEM_PIPELINES = { 'tuchong.pipelines.TuchongPipeline': 300, # 管道名称: 运行优先级(数字小优先) }
另外,大多数网站都有反爬虫的 Robots.txt 排除协议,设置 ROBOTSTXT_OBEY = True 可以忽略这些协议,是的,这好像只是个君子协定。如果网站设置了浏览器User Agent或者IP地址检测来反爬虫,那就需要更高级的Scrapy功能,本文不做讲解。
四、运行
返回 cmder 命令行进入项目目录,输入命令:
scrapy crawl photo
终端会输出所有的爬行结果及调试信息,并在最后列出爬虫运行的统计信息,例如:
[scrapy.statscollectors] INFO: Dumping Scrapy stats: {'downloader/request_bytes': 491, 'downloader/request_count': 2, 'downloader/request_method_count/GET': 2, 'downloader/response_bytes': 10224, 'downloader/response_count': 2, 'downloader/response_status_count/200': 2, 'finish_reason': 'finished', 'finish_time': datetime.datetime(2017, 11, 27, 7, 20, 24, 414201), 'item_dropped_count': 5, 'item_dropped_reasons_count/DropItem': 5, 'item_scraped_count': 15, 'log_count/DEBUG': 18, 'log_count/INFO': 8, 'log_count/WARNING': 5, 'response_received_count': 2, 'scheduler/dequeued': 1, 'scheduler/dequeued/memory': 1, 'scheduler/enqueued': 1, 'scheduler/enqueued/memory': 1, 'start_time': datetime.datetime(2017, 11, 27, 7, 20, 23, 867300)}
主要关注ERROR及WARNING两项,这里的 Warning 其实是不符合条件而触发的 DropItem 异常。
五、保存结果
大多数情况下都需要对抓取的结果进行保存,默认情况下 item.py 中定义的属性可以保存到文件中,只需要命令行加参数 -o {filename} 即可:
scrapy crawl photo -o output.json # 输出为JSON文件 scrapy crawl photo -o output.csv # 输出为CSV文件
注意:输出至文件中的项目是未经过 TuchongPipeline 筛选的项目,只要在 parse 函数中返回的 Item 都会输出,因此也可以在 parse 中过滤只返回需要的项目
如果需要保存至数据库,则需要添加额外代码处理,比如可以在 pipelines.py 中 process_item 后添加:
... def process_item(self, item, spider): ... else: print(item['url']) self.myblog.add_post(item) # myblog 是一个数据库类,用于处理数据库操作 return item ...
为了在插入数据库操作中排除重复的内容,可以使用 item[‘post_id’] 进行判断,如果存在则跳过。
时间:2018-10-09 22:41 来源: 转发量:次
声明:本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,不为其版权负责。如果您发现网站上有侵犯您的知识产权的作品,请与我们取得联系,我们会及时修改或删除。
相关文章:
- [数据挖掘]底层I/O性能大PK:Python/Java被碾压,Rust有望取代
- [数据挖掘]大数据分析的技术有哪些?
- [数据挖掘]大数据分析会遇到哪些难题?
- [数据挖掘]RedMonk语言排行:Python力压Java,Ruby持续下滑
- [数据挖掘]不得了!Python 又爆出重大 Bug~
- [数据挖掘]TIOBE 1 月榜单:Python年度语言四连冠,C 语言再次
- [数据挖掘]TIOBE12月榜单:Java重回第二,Python有望四连冠年度
- [数据挖掘]这个可能打败Python的编程语言,正在征服科学界
- [数据挖掘]2021年编程语言趋势预测:Python和JavaScript仍火热,
- [数据挖掘]Spark 3.0重磅发布!开发近两年,流、Python、SQL重
相关推荐:
网友评论: