2018年最值得推荐的6款大数据挖掘工具
数据挖掘是指这个过程:在庞大数据集当中发现模式,将它转换成有效的信息。该技术利用特定的算法、统计分析、人工智能和数据库系统,从庞大数据集中提取信息,并转换成易于理解的形式。本文介绍了广泛用于大数据行业的10种综合数据挖掘工具。
1. Rapid Miner
Rapid Miner是一个数据科学软件平台,为数据准备、机器学习、深度学习、文本挖掘和预测分析提供一种集成环境。它是领先的数据挖掘开源系统之一。该程序完全用Java编程语言编写。该程序提供了一个选项,以便用户试用大量可任意嵌套的操作符,这些操作符在XML文件中有详细说明,可由Rapid Miner的图形用户界面来构建。
2. Oracle Data Mining
它是Oracle高级分析数据库的代表。市场领先的公司用它最大限度地发掘数据的潜力,做出准确的预测。该系统配合强大的数据算法,锁定最佳客户。此外,它可识别异常情况和交叉销售机会,让用户能够根据需要运用不同的预测模型。此外,它以所需的方式定制客户画像。
3. IBM SPSS Modeler
说到大规模项目,IBM SPSS Modeler最适合。在这个建模器中,文本分析及其最先进的可视化界面极具价值。它有助于生成数据挖掘算法,基本上不需要编程。它可广泛用于异常检测、贝叶斯网络、CARMA、Cox回归以及使用多层感知器和反向传播学习的基本神经网络。
4. KNIME
Konstanz Information Miner是一个开源数据分析平台。你可以迅速在其中部署、扩展和熟悉数据。在商业智能界,KNIME号称是有助于为毫无经验的用户提供预测智能的平台。此外,数据驱动的创新系统有助于发掘数据潜力。此外,它包括数千个模块和随时可用的示例以及一大批集成的工具和算法。
5. Python
Python是一种免费的开源语言,因易用性常常与R相提并论。与R不同,Python学起来往往很容易上手,易于使用。许多用户发现可以在几分钟内开始构建数据,并进行极其复杂的亲和度分析。只要你熟悉变量、数据类型、函数、条件语句和循环等基本编程概念,最常见的业务用例数据可视化就很简单。
6.火车采集器
火车采集器由合肥乐维信息技术有限公司开发,是一款专业的网络数据采集/信息挖掘处理软件,通过灵活的配置,可以很轻松迅速地从网页上抓取结构化的文本、图片、文件等资源信息,可编辑筛选处理后选择发布到网站后台,各类文件或其他数据库系统中。
时间:2018-09-25 16:21 来源: 转发量:次
声明:本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,不为其版权负责。如果您发现网站上有侵犯您的知识产权的作品,请与我们取得联系,我们会及时修改或删除。
相关文章:
相关推荐:
网友评论:
最新文章
热门文章