行业报告 AI展会 数据标注 标注供求
数据标注数据集
主页 > 数据挖掘 正文

TF Learn : 基于Scikit-learn和TensorFlow的深度学习利器

TF Learn : 基于Scikit-learn和TensorFlow的深度学习利器了解国外数据科学市场的人都知道,2017年海外数据科学最常用的三项技术是 Spark ,Python 和 MongoDB 。说到 Python ,做大数据的人都不会对 Scikit-learn 和 Pandas 感到陌生。

Scikit-learn 是最常用的 Python 机器学习框架,在各大互联网公司做算法的工程师在实现单机版本的算法的时候或多或少都会用到 Scikit-learn 。TensorFlow 就更是大名鼎鼎,做深度学习的人都不可能不知道 TensorFlow。

下面我们先来看一段样例,这段样例是传统的机器学习算法逻辑回归的实现:

 

TF Learn : 基于Scikit-learn和TensorFlow的深度学习利器

 

可以看到,样例中仅仅使用了 3 行代码就完成了逻辑回归的主要功能。下面我们来看一下如果用 TensorFlow 来实现同样的代码,需要多少行?下面的代码来自 GitHub :

 

 

一个相对来说比较简单的机器学习算法,用 Tensorflow 来实现却花费了大量的篇幅。然而 Scikit-learn 本身没有 Tensorflow 那样丰富的深度学习的功能。有没有什么办法,能够在保证 Scikit-learn 的简单易用性的前提下,能够让 Scikit-learn 像 Tensorflow 那样支持深度学习呢?答案是有的,那就是 Scikit-Flow 开源项目。该项目后来被集成到了 Tensorflow 项目里,变成了现在的 TF Learn 模块。

我们来看一个 TF Learn 实现线性回归的样例:

 

 

我们可以看到,TF Learn 继承了 Scikit-Learn 的简洁编程风格,在处理传统的机器学习方法的时候非常的方便。下面我们看一段 TF Learn 实现 CNN (MNIST数据集)的样例:

 

 

可以看到,基于 TF Learn 的深度学习代码也是非常的简洁。

TF Learn 是 TensorFlow 的高层次类 Scikit-Learn 封装,提供了原生版 TensorFlow 和 Scikit-Learn 之外的又一种选择。对于熟悉了 Scikit-Learn 和厌倦了 TensorFlow 冗长代码的用户来说,不啻为一种福音,也值得机器学习和数据挖掘的从业者认真学习和掌握。

作者:汪昊,恒昌利通大数据部负责人/资深架构师,美国犹他大学本科/硕士,对外经贸大学在职MBA。

微信公众号

声明:本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,不为其版权负责。如果您发现网站上有侵犯您的知识产权的作品,请与我们取得联系,我们会及时修改或删除。

网友评论:

发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片
SEM推广服务

Copyright©2005-2028 Sykv.com 可思数据 版权所有    京ICP备14056871号

关于我们   免责声明   广告合作   版权声明   联系我们   原创投稿   网站地图  

可思数据 数据标注

扫码入群
扫码关注

微信公众号

返回顶部