行业报告 AI展会 数据标注 标注供求
数据标注数据集
主页 > 数据挖掘 正文

数据中台元年,破除数智化转型中的四大常见误

据中台、数智化转型的讨论也是非常火热。几乎每个企业都在关心如何构建自己的数据中台,如何利用数据中台构建企业自己的数据银行。

01 从 IT 到 DT 时代,亟需 AI 赋能

IT 时代由人编辑数据库,而在 DT 时代由机器编辑数据库。三年前马老师讲,DT 时代中国是可以直道超车的,因为中国有人口基数的优势,产生的数据最多。阿里巴巴 CEO 张勇也提到了我们从五新迈向了百新,五新里面最核心的是新能源,而新数据就是新能源。中国有十几亿人口,每天产生新能源、新数据也最多,所以人工智能一定在中国先诞生,并且人工智能的技术会复制到全球,全球优秀的企业都会采用中国的大数据和人工智能技术。同时,数据中台将是每一个企业做战略转型和整个业务转型的一个基础设施。企业数字化、智能化就是一种必然的趋势。

02 数智化转型中的四大常见误区

1、拿来主义

在拜访客户时,客户会问有没有数据可以给自己用,这着实有些让人哭笑不得,答案想必是否定的。因为数据是最核心的资产。自己业务系统产生的数据先用起来,形成闭环以后才能慢慢地看怎么把三方的数据融合起来,并把自己的数据和别人做简单的碰撞和交换,数据一定是和应用场景相结合才能被应用起来,拿来主义要不得。

2、业务和 IT 部门谁主导

数智化转型过程应人人参与,各司其职。其实 IT 很多时候是对业务的理解,只是在前面十年 IT 的建设中对业务有很强的理解,以往业务和 IT 之间的沟通有所限制。事实上 IT 在整个过程中通过机器发现了很多业务,这个时候需要有一种新的机制和组织来保障运行,应是一个相辅相成的关系。IT 要更多地理解业务痛点,通过跨部门的协作和整个行业内的数据协作找到业务曾经发现不了的规律。

3、切入点怎么找

在找切入点的过程中,经常说先建一个平台,把所有数据聚进来,再慢慢清洗整理,或是先做一个小的数据应用看它跑得如何。我们说人都是千人千面的,每一家企业当然是不一样的,切入点通常是在大家共同的探讨之后,通过一些方法论找到最适合自己的切入点。企业要做的首先是把不同的业务部门的数据做体系化的梳理,并且找到创新业务最需要的业务应用点,再反推到怎么建数据中台。所以我们常说以用带通、以通带存,以存带采。

4、有存、无通、想用

现在大部分企业有把数据存下来的意识,他们也会找一些数据公司把存量的数据用起来,但所有的数据都没有通起来,真正能够通起来的企业非常少。很多客户觉得数据只有大而全才可以用,其实不然。我们发现其实数据是有多少就可以用多少,关键看你怎么用。

解开以上四大误区的五个方子:

1、采集并用好自有数据,再结合三方

2、IT 与业务深度融合

3、以用带通、以通带存,以存带采

4、数据可以不全,但可以有多少用多少

5、面向数智化转型的组织保障

03 赋能商业,助推企业降本增效

 

 

我常说自己承担了技术和商业落地的翻译官的工作。上图从数据采集开始,大家之前都是业务系统里有很多的数据,并且这个数据很多时候维度比较单一,也比较少。我们会通过互联网的数据和三方数据做一些数据升维,数据不全、数据质量差,数据没有被充分利用都是没法做好数智化应用。

 

 

我们在深耕数据智能应用,也就是我刚才说的 IT 到 DT 时代的核心改变,我们把智能应用分为人、货、场。在人货场里面做了人货关系、货场关系之间的数据智能应用。在这个智能应用之下到数据的通、存、采集,它才能够跟行业做更多结合。但这是远远不够的,我们认为今后的数据智能应用将会是它的几百倍甚至几千倍。而我们在数智化应用之上,也为零售领域各行业客户数智化转型赋能,助推企业降本增效。在此分享两则我们赋能客户数智化转型的案例:

1、某家居标签体系建设及精准营销

我们为某家居建设统一的客户标签体系,实现了:

• 数据中台总数据量达到 100T,客户数量达到 3000 万;

• 新增有效客户标签 200 个以上;

• 基于统一的算法标签实现客户精准投放,渠道投放成本每年节省 500 万元;

• 基于精准营销,复购率比原来提升 4%,营收比原来增加 2 亿元左右。

2、某商超数据中台构建

我们为某商超建设业务应用和数据中台,实现了:

• 数据中台应用,结合企业微信管理,员工报表使用率提升 20%;

• IT 运维成本下降,通过双中台的升级,设备故障率下降为 0;

• 财务处理人员成本下降,通过数据中台中提供的财务及发票的数据智能处理,每年节约 30 万左右的人力成本;

• 通过数据中台中智能化,支持优化新业务拓展流程,每个新业务(需求)建设平均时间原来为 15-30 多天,现在下降为 3-15 天。

04 构建一个面向未来的数据中台

数据中台是企业数智化转型的必然选择。作为一个企业,不管是业务方还是 IT 方,或是董事长、CEO,一定要构建一个面向未来的数据中台,而不是一个小型的数据仓库。因为现在是数据大爆发的时代,业务系统数据到互联网数据再到 5G 和万物互联的数据,数据应该是大于指数级的增长,怎么样从海量的数据中找到优化业务和精细化运营的点。这是我们在 AI+ 算法定义的世界里面要孜孜不倦去挖掘和发现的一个持续十年不断努力的过程。

作者介绍

刘莹,现任奇点云联合创始人兼 COO,曾是阿里云成都分公司创始人,阿里云华东地区政府业务、生态运营业务负责人,阿里云大数据创新业务代言人,IBM 全球副总裁总助,中华区行业销售运营总经理,IBM 政府、教育、医疗等行业销售经理,智慧城市解决方案经理。致力于在大数据和人工智能道路上精益求精,追求卓越。

微信公众号

声明:本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,不为其版权负责。如果您发现网站上有侵犯您的知识产权的作品,请与我们取得联系,我们会及时修改或删除。

网友评论:

发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片
SEM推广服务

Copyright©2005-2028 Sykv.com 可思数据 版权所有    京ICP备14056871号

关于我们   免责声明   广告合作   版权声明   联系我们   原创投稿   网站地图  

可思数据 数据标注

扫码入群
扫码关注

微信公众号

返回顶部