数据科学家与数据分析师的三个区别
然而,数据科学家和另一个常见的大数据角色——数据分析师之间的区别仍然不清晰。
数据科学家和数据分析师有相同的目标:通过解释信息提供关键业务决策和趋势。但这些也为他们的角色带来了不同的技能、教育和经验水平要求,并且影响了他们的需求和薪酬。
根据Indeed的调查,下面是这两个角色的细分:
数据分析师需要做什么?
数据分析人员使用结构化数据,这些结构化数据大多是电子表格或数据库的形式(例如,零售商店购买历史或医疗记录),发现业务方面的见解。然后这些专业人员创建报告、图表和其他可视化,以便将发现成果传达给管理层或其他业务人员,并帮助做出决策。
例如,在运输行业工作的数据分析师可能会从数据集中收集、处理和组织信息,如调度记录或运输数据库,以发现问题并提出建议,从而提高服务效率,并为公司降低成本。
数据科学家需要做什么?
数据科学家的工作与数据分析师类似,但活动规模更大。这些专业人员通常需要研究更大、更复杂的数据集,包括结构化和非结构化数据。数据科学家还需要设计实验来解决复杂的代码问题,并建立预测模型和机器学习算法。
数据科学家还致力于确定需要提出哪些问题,并根据业务问题回答数据问题,目的是帮助企业做出更好的决策。
以Spotify为例。该公司的数据分析师可能会专注于研究音乐聆听模式。但是,数据科学家可能会将tb级的数据转换成受众细分模型,帮助工程师构建个性化的音乐推荐引擎,或者检查用户行为和货币化研究,从而生成有针对性的广告。
要成为一名数据科学家或数据分析师,你需要什么技能?
Indeed称,数据分析师最需要的10项技能如下:
机器学习
脚本
SQL
Stata
Microsoft Excel
Tableau
Python
R
Microsoft SQL服务器
SAS
数据分析师的平均年薪为65364美元,不过会因地区的不同而有所不同。
Indeed称,数据科学家最需要的10项技能如下:
机器学习
脚本
Python
R
SQL
Spark
Java
数据挖掘
Stata
Hadoop
数据科学家的平均年薪为121189美元,不过主要是大城市。换句话说,数据科学家的年收入比数据分析师高出86%。
报告发现,尽管这两个职位都最需要机器学习技能,但招聘要求有很大不同:超过34%的数据科学职位要求机器学习技能,但只有3%的数据分析师要求此技能 。因此,尽管机器学习可能会给数据分析师带来竞争优势,但实际工作中可能并不需要。
数据科学家和数据分析师之间的主要区别是什么?
这两个职位之间有三个关键区别:
数据分析师回答业务部门提出的一系列定义明确的问题,而数据科学家则制定并回答开放式问题,以获得业务洞察力。
数据分析师主要使用来自单一来源的结构化数据,而数据科学家则专注于分析来自多个不连续来源的非结构化数据。
数据分析师组织和分类数据以解决当前的问题,而数据科学家则利用他们在计算机科学、数学和统计学方面的背景来预测未来情况。
报告指出:“归根结底,没有数据分析师,数据科学家就不可能成功,反之亦然。”“进入数据科学领域需要更多的前期投资(更高的教育、技能要求),但就薪资而言,回报也会更高。此外,数据科学就业市场的增长速度似乎比数据分析师就业市场更快,这意味着未来这个热门职位可能会有更多的机会。”
时间:2019-08-16 22:22 来源: 转发量:次
声明:本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,不为其版权负责。如果您发现网站上有侵犯您的知识产权的作品,请与我们取得联系,我们会及时修改或删除。
相关文章:
- [数据挖掘]缓存与数据库双写一致性
- [数据挖掘]揭开AWS的Timestream数据库的面纱
- [数据挖掘]设计bug导致数据被删除,java工程师背锅被开除:
- [数据挖掘]Oracle 行贿 10 万元:中标 1980 万元数据库项目
- [数据挖掘]"存算分离"已成为分布式数据库的主流方
- [数据挖掘]属于 Hadoop 的大数据时代已结束
- [数据挖掘]流数据并行处理性能比较:Kafka vs Pulsar vs Praveg
- [数据挖掘]大数据凉凉了?Apache将一众大数据开源项目束之
- [数据挖掘]卸载Navicat!操作所有的数据库靠它就够了
- [数据挖掘]利用大数据预测,先要避免“冷启动偏差”!|
相关推荐:
网友评论:
最新文章
热门文章