行业报告 AI展会 数据标注 标注供求
数据标注数据集
主页 > 大数据 正文

成为顶尖算法专家需要知道哪些算法?

 

机器学习算法简介

有两种方法可以对你现在遇到的所有机器学习算法进行分类。

第一种算法分组是学习风格的。

第二种算法分组是通过形式或功能相似。

通常,这两种方法都能概括全部的算法。但是,我们将重点关注通过相似性对算法进行分组。

通过学习风格分组的机器学习算法

 

 

算法可以通过不同的方式对问题进行建模,但是,无论我们想要什么结果都需要数据。此外,算法在机器学习和人工智能中很流行。让我们来看看机器学习算法中的三种不同学习方式:

监督学习

 

 

基本上,在监督机器学习中,输入数据被称为训练数据,并且具有已知的标签或结果,例如垃圾邮件/非垃圾邮件或股票价格。在此,通过训练过程中准备模型。此外,还需要做出预测。并且在这些预测错误时予以纠正。训练过程一直持续到模型达到所需水平。

示例问题:分类和回归。

示例算法:逻辑回归和反向传播神经网络。

无监督学习

 

 

在无监督机器学习中,输入数据未标记且没有已知结果。我们必须通过推导输入数据中存在的结构来准备模型。这可能是提取一般规则,但是我们可以通过数学过程来减少冗余。

示例问题:聚类,降维和关联规则学习。

示例算法:Apriori算法和k-Means。

半监督学习

 

 

输入数据是标记和未标记示例的混合。存在期望的预测问题,但该模型必须学习组织数据以及进行预测的结构。

示例问题:分类和回归。

示例算法:其他灵活方法的扩展。

由功能的相似性分组的算法

ML算法通常根据其功能的相似性进行分组。例如,基于树的方法以及神经网络的方法。但是,仍有算法可以轻松适应多个类别。如学习矢量量化,这是一个神经网络方法和基于实例的方法。

回归算法

 

 

回归算法涉及对变量之间的关系进行建模,我们在使用模型进行的预测中产生的错误度量来改进。

这些方法是数据统计的主力,此外,它们也已被选入统计机器学习。最流行的回归算法是:

普通最小二乘回归(OLSR);

线性回归;

Logistic回归;

逐步回归;

多元自适应回归样条(MARS);

局部估计的散点图平滑(LOESS);

基于实例的算法

 

 

该类算法是解决实例训练数据的决策问题。这些方法构建了示例数据的数据库,它需要将新数据与数据库进行比较。为了比较,我们使用相似性度量来找到最佳匹配并进行预测。出于这个原因,基于实例的方法也称为赢者通吃方法和基于记忆的学习,重点放在存储实例的表示上。因此,在实例之间使用相似性度量。最流行的基于实例的算法是:

k-最近邻(kNN);

学习矢量量化(LVQ);

自组织特征映射(SOM);

本地加权学习(LWL);

正则化算法

 

 

我在这里列出了正则化算法,因为它们很流行,功能强大。并且通常对其他方法进行简单的修改,最流行的正则化算法是:

岭回归;

最小绝对收缩和选择算子(LASSO);

弹性网回归;

最小角回归(LARS);

决策树算法

 

 

决策树方法用于构建决策模型,这是基于数据属性的实际值。决策在树结构中进行分叉,直到对给定记录做出预测决定。决策树通常快速准确,这也是机器学习从业者的最爱的算法。最流行的决策树算法是:

分类和回归树(CART);

迭代Dichotomiser 3(ID3);

C4.5和C5.0(强大方法的不同版本);

卡方自动交互检测(CHAID);

决策树桩;

M5;

条件决策树;

贝叶斯算法

 

 

这些方法适用于贝叶斯定理的问题,如分类和回归。最流行的贝叶斯算法是:

朴素贝叶斯;

高斯朴素贝叶斯;

多项朴素贝叶斯;

平均一依赖估计量(AODE);

贝叶斯信念网络(BBN);

贝叶斯网络(BN);

聚类算法

 

 

几乎所有的聚类算法都涉及使用数据中的固有结构,这需要将数据最佳地组织成最大共性的组。最流行的聚类算法是:

K-均值;

K-平均;

期望最大化(EM);

分层聚类;

关联规则学习算法

 

 

关联规则学习方法提取规则,它可以完美的解释数据中变量之间的关系。这些规则可以在大型多维数据集中被发现是非常重要的。最流行的关联规则学习算法是:

Apriori算法;

Eclat算法;

人工神经网络算法

 

 

这些算法模型大多受到生物神经网络结构的启发。它们可以是一类模式匹配,可以被用于回归和分类问题。它拥有一个巨大的子领域,因为它拥有数百种算法和变体。最流行的人工神经网络算法是:

感知机;

反向传播;

Hopfield神经网络;

径向基函数神经网络(RBFN)

深度学习算法

 

 

深度学习算法是人工神经网络的更新。他们更关心构建更大更复杂的神经网络。最流行的深度学习算法是:

深玻尔兹曼机(DBM);

深信仰网络(DBN);

卷积神经网络(CNN);

堆叠式自动编码器;

降维算法

 

 

与聚类方法一样,维数减少也是为了寻求数据的固有结构。通常,可视化维度数据是非常有用的。此外,我们可以在监督学习方法中使用它。

主成分分析(PCA);

主成分回归(PCR);

偏最小二乘回归(PLSR);

Sammon Mapping;

多维缩放(MDS);

投影追踪;

线性判别分析(LDA);

高斯混合判别分析(MDA);

二次判别分析(QDA);

费舍尔判别分析(FDA);

常用机器学习算法列表

 

 

朴素贝叶斯分类器机器学习算法

通常,网页、文档和电子邮件进行分类将是困难且不可能的。这就是朴素贝叶斯分类器机器学习算法的用武之地。分类器其实是一个分配总体元素值的函数。例如,垃圾邮件过滤是朴素贝叶斯算法的一种流行应用。因此,垃圾邮件过滤器是一种分类器,可为所有电子邮件分配标签“垃圾邮件”或“非垃圾邮件”。基本上,它是按照相似性分组的最流行的学习方法之一。这适用于流行的贝叶斯概率定理。

K-means:聚类机器学习算法

通常,K-means是用于聚类分析的无监督机器学习算法。此外,K-Means是一种非确定性和迭代方法,该算法通过预定数量的簇k对给定数据集进行操作。因此,K-Means算法的输出是具有在簇之间分离的输入数据的k个簇。

支持向量机学习算法

基本上,它是用于分类或回归问题的监督机器学习算法。SVM从数据集学习,这样SVM就可以对任何新数据进行分类。此外,它的工作原理是通过查找将数据分类到不同的类中。我们用它来将训练数据集分成几类。而且,有许多这样的线性超平面,SVM试图最大化各种类之间的距离,这被称为边际最大化。

SVM分为两类:

线性SVM:在线性SVM中,训练数据必须通过超平面分离分类器。

非线性SVM:在非线性SVM中,不可能使用超平面分离训练数据。

Apriori机器学习算法

这是一种无监督的机器学习算法。我们用来从给定的数据集生成关联规则。关联规则意味着如果发生项目A,则项目B也以一定概率发生,生成的大多数关联规则都是IF_THEN格式。例如,如果人们购买iPad,那么他们也会购买iPad保护套来保护它。Apriori机器学习算法工作的基本原理:如果项目集频繁出现,则项目集的所有子集也经常出现。

线性回归机器学习算法

它显示了2个变量之间的关系,它显示了一个变量的变化如何影响另一个变量。

决策树机器学习算法

决策树是图形表示,它利用分支方法来举例说明决策的所有可能结果。在决策树中,内部节点表示对属性的测试。因为树的每个分支代表测试的结果,并且叶节点表示特定的类标签,即在计算所有属性后做出的决定。此外,我们必须通过从根节点到叶节点的路径来表示分类。

随机森林机器学习算法

它是首选的机器学习算法。我们使用套袋方法创建一堆具有随机数据子集的决策树。我们必须在数据集的随机样本上多次训练模型,因为我们需要从随机森林算法中获得良好的预测性能。此外,在这种集成学习方法中,我们必须组合所有决策树的输出,做出最后的预测。此外,我们通过轮询每个决策树的结果来推导出最终预测。

Logistic回归机器学习算法

这个算法的名称可能有点令人困惑,Logistic回归算法用于分类任务而不是回归问题。此外,这里的名称“回归”意味着线性模型适合于特征空间。该算法将逻辑函数应用于特征的线性组合,这需要预测分类因变量的结果。

结论

我们研究了机器学习算法,并了解了机器学习算法的分类:回归算法、基于实例的算法、正则化算法、决策树算法、贝叶斯算法、聚类算法、关联规则学习算法、人工神经网络算法、深度学习算法、降维算法、集成算法、监督学习、无监督学习、半监督学习、朴素贝叶斯分类器算法、K-means聚类算法、支持向量机算法、Apriori算法、线性回归和Logistic回归。熟悉这类算法奖有助你成为机器学习领域的专家!

微信公众号

声明:本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,不为其版权负责。如果您发现网站上有侵犯您的知识产权的作品,请与我们取得联系,我们会及时修改或删除。

网友评论:

发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片
SEM推广服务

Copyright©2005-2028 Sykv.com 可思数据 版权所有    京ICP备14056871号

关于我们   免责声明   广告合作   版权声明   联系我们   原创投稿   网站地图  

可思数据 数据标注

扫码入群
扫码关注

微信公众号

返回顶部