申请专栏作者 参展 行业报告
投稿发布
您的当前位置:主页 > 大数据 > 正文

独家揭秘!2.5亿用户的美团智能推荐平台是如何

来源:未知 时间:2019-08-22
 

推荐在 O2O 场景中的应用

10.1 典型的 O2O 推荐场景

美团移动端推荐展位是一个典型的 O2O 推荐场景,包括首页猜你喜欢和商家详情页附近团购、团购详情页看了又看等多个展位。首页猜你喜欢展位图如图 10-1 所示。

 

猜你喜欢展位是美团移动端首页的推荐展位,也是美团移动端流量最大的推荐展位。推荐内容包括团购单、酒店商家、外卖商家、电影院等,是一个混合形态的推荐。

详情页推荐展位包括商家详情页的附近团购和团购详情页的相关团购等。附近团购主要是附近商家的推荐(见图 10-2),相关团购主要是团购的推荐(见图 10-3),推荐形态相比猜你喜欢更单一一些。

猜你喜欢展位中,用户意图并不是太明确,推荐结果包括美食团购、外卖、酒店、旅游等多种类型的结果。详情页中,用户已经有了比较明确的意图,比较倾向于推相关品类的结果或者关联品类的结果。

10.2 O2O 推荐场景特点

以美团移动端推荐为例,O2O 推荐场景与其他推荐的区别具体包括如下三点。

地理位置因素。特别是对于美食、酒店、外卖等业务,用户倾向于使用附近商家的服务。

用户历史行为。新闻或者资讯推荐,用户看一次了解这些信息之后,就不会再去读第二遍。与新闻推荐不同,一家味道好的店,用户可能会反复光顾。从具体的数据来看,大量用户会产生重复点击和重复购买的行为。

实时推荐。一是地理位置,推荐需要考虑用户的实时位置。二是 O2O 场景的即时消费性,例如美食、外卖、电影等都是高频消费,用户从考虑到最终下单之间间隔时间非常短,所以推荐必须要实时,并且根据用户的实时反馈调整推荐的内容。

下面我们就这三个特点进行展开阐述。

10.2.1 O2O 场景的地理位置因素

地理位置因素分为若干个层次:KD-Tree 实时索引、GeoHash 索引、热门商圈索引、城市维度索引等。我们一般通过建立基于地理位置的索引来检索周边的商家和服务。在推荐时根据用户的实时地理位置实时地查询附近的商家和服务。对于与地理位置不太相关的内容,可以单独以城市维度或者商圈维度来建立索引,例如景点等。常用的地理位置索引可以是 KD-Tree 索引,它能达到很好的实时检索性能。下面分别讲解不同层次索引的异同点和优缺点。

KD-Tree 索引。以当前位置为圆心,可以快速检索出指定距离范围内的商家和服务。优点是精度最高。

GeoHash 索引。对区域进行正方形和六边形的划分,快速找出 GeoHash 范围内的商家和服务。缺点是精度不太高,如果当前实时位置在区域边沿,这个位置可能与另一个邻接 GeoHash 内商家和服务的距离会更近。

热门商圈索引。商圈索引检索的粒度相对粗一些,但是比较符合人生活中的实际经验,比如北京的五道口商圈、国贸商圈等。将商家和服务按照商圈的维度组织起来,可以使得我们能够给用户推荐感兴趣的同商圈的内容。

城市维度索引。它可以用来索引一些与地理位置关系不大的内容,例如景点等。另外,用户没有地理位置信息时,只能通过城市维度索引去检索出相关内容。

10.2.2 O2O 场景的用户历史行为

因为 O2O 场景用户有重复点击和购买的情况,所以我们需要用到用户的历史行为信息,包括用户的点击、下单、购买、支付、收藏、退款、评价等行为。在实际使用过程中会根据用户历史行为距离当前的时间进行相应的时间衰减,目的是加强最近行为的权重,减少久远行为的权重。

由于美团的用户量巨大,将用户所有行为全部存储下来供线上使用不太现实。实际应用会结合用户的活跃度和行为的类别来做相应的截断。例如,较活跃的用户会保留时间较短的行为,不太活跃的用户保留时间更长一些的行为。常用的方法有两个:以一个时间段为界,保留这一个时间段里的所有行为,比如 3 个月、1 年等;以固定数量保留用