行业报告 AI展会 数据标注 标注供求
数据标注数据集
主页 > 大数据 正文

大数据和数据分析区别是什么?可以从这三方面

大数据

 

我们先谈谈是什么样的数据。 IBM有一个著名的5V大数据理论:Volume(大量)、Velocity(高速)、Variety(多样性)、Value(价值)以及Veracity(真实性)。简而言之,达到大规模的数据,极快的流通速度,数据类型和来源的多样性,低值密度以及可以反映事物真实性的数据就是大数据。那么大数据分析和传统数据分析之间有什么区别?亿信华辰小编给大家介绍一下。

大数据和数据分析区别是什么?

大数据和数据分析处理的数据规模不同:大数据分析是指在可承受的时间范围内无法使用常规软件工具捕获,管理和处理的数据集合;数据分析是指使用适当的统计分析方法来收集数据,以进行大量数据分析。还存在不同的理论要求,不同的工具要求,不同的分析方法,不同的业务分析功能以及不同的结果表示功能。

大数据和数据分析之间的区别表现在哪些方面?

第一,就分析方法而言,两者并无本质区别。数据分析的核心工作是对数据指标的分析,思考和解释。人脑可以携带的数据量极为有限。因此,无论是“传统数据分析”还是“大数据分析”,都需要根据分析思路对原始数据进行统计处理,以获得汇总统计结果供人为分析。两者在此过程中相似,不同之处仅在于处理方法是由原始数据的大小引起的。

第二,两者在使用统计知识方面有很大的不同。“传统数据分析”中使用的知识主要围绕“可以通过少量采样数据来猜测现实世界”这一主题。 “大数据分析”主要是使用各种类型的全量数据(非采样数据)设计统计程序并获得详细而有把握的统计结论。

第三,两者之间在机器学习模型方面存在根本差异。“传统数据分析”大多数时候,知识使用机器学习模型作为黑匣子工具来协助分析数据。 “大数据分析”通常是两者的紧密结合。大数据分析不仅会产生分析效果评估,而且还会基于此进行产品升级。在大数据分析的背景下,数据分析通常是数据上墨的序幕,而数据建模是数据分析的结果。

微信公众号

声明:本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,不为其版权负责。如果您发现网站上有侵犯您的知识产权的作品,请与我们取得联系,我们会及时修改或删除。

网友评论:

发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片
SEM推广服务

Copyright©2005-2028 Sykv.com 可思数据 版权所有    京ICP备14056871号

关于我们   免责声明   广告合作   版权声明   联系我们   原创投稿   网站地图  

可思数据 数据标注

扫码入群
扫码关注

微信公众号

返回顶部