AI 识别早期脑瘫,可将儿童运动视频转化为“火柴人”
近日,赫尔辛基大学和比萨大学研究人员,与AI公司坦佩雷(Tampere)的神经事件实验室(Neuro Event Labs)合作,开发并证明了一种新的评估儿童神经发育的方法。
研究人员利用 AI 图像识别算法将视频记录中幼儿的图像运动模式自动转化为如图所示的「火柴人(stick man)」形式的客观生物标记物,在这项同行评审的研究中,该方法已被用于识别早期脑瘫(CP)。
AI 「火柴人」揭示运动基本要素
脑瘫的识别往往通过观察婴幼儿的动作及反应情况,极大地依靠医生的主观视觉经验,难免会误诊或效率低。
另外,目前进行婴幼儿脑瘫识别诊断的医生,需要通过国际水准课程的专业知识培训,这很大程度地限制了具有相关技能的医生或治疗师的数量。
「行业迫切需要客观和自动化的方法,允许医生在更广泛的范围内进行运动分析,并使世界上尽可能多的儿童可以使用。」赫尔辛基大学临床神经生理学教 Sampsa Vanhatalo 说。
本文所述研究利用一种被称为姿势估计(pose estimation)的技术,创建了一种能够精确提取儿童动作的方法,该方法可以根据儿童运动视频,可以构建一个简化的「火柴人」棒形图视频。
了解到,在这项研究中,研究人员选择了 2011 年至 2017 年期间参加意大利 IRCCS Stella Maris 基金会研究的 21 名 8-17 周婴儿的存盘视频。其中, 14 例呈现典型的低风险运动, 7 例呈现非典型运动并在后来被诊断为脑瘫。
使用坦佩雷神经事件实验室的姿势估计模型,转化出「火柴人」视频后,研究人员向具有转基因专业知识的医生提供「火柴人」视频,以查看这些视频中是否保留了传统脑瘫诊断上重要的资讯。
结果显示,仅使用「火柴人」视频,幼儿的临床基本资讯可以被保留,医生能够把 95 %的病例分配为诊断组。
该研究证明,自动算法可以从正常视频记录中提取临床上重要的运动模式。这些棒图视频可以直接用于定量分析,识别儿童脑瘫。
Vanhatalo 表示 ,在儿童脑瘫研究中,个人隐私是行业瓶颈。「火柴人」研究的意义在于使用简笔划视频不会涉及隐私问题,数据可以在全球研究中共享。
AI 运动分析应用于神经学
运动分析可以以多种方式改善医生对疾病的治疗决策,为不同治疗策略效果提供客观的定量测量方法。
除早期脑瘫检测外, AI 自动运动分析在评估婴儿神经发育方面具有许多潜在的应用。
例如应用儿童健康管理,自动化运动分析可以对儿童进行院外筛查,以识别需要进一步护理的儿童,或者在关注儿童发育的情况下确保大脑发育正常。
据了解,在上述研究结果出来后,研究人员又在进行另一项儿童研究。目前已经收集了包括 3D 视频记录在内的多种数据集,正在开发一种基于 AI 的婴儿运动成熟度评估方法。
Vanhatalo 教授表示,新的研究理由很简单:我们用人工智能评估运动,未来儿童由于发育不成熟,表现出来的与实际年龄不符的运动特徵就会被发现并及早进行干预治疗。
「使用机器学习和人工智能可以从简单的家庭级视频录制中提取大量与临床有用的资讯。最终目标是能够在任何地方,视频都可以高品质反应婴儿情况。」Vanhatalo总结道。
时间:2019-04-01 19:07 来源: 转发量:次
声明:本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,不为其版权负责。如果您发现网站上有侵犯您的知识产权的作品,请与我们取得联系,我们会及时修改或删除。
相关文章:
- [智慧医疗]CVPR 2020 论文大盘点-医学影像处理识别篇
- [智慧医疗]ARCH PATHOL LAB MED:深度学习卷积神经网络可以识别
- [智慧医疗]ARCH PATHOL LAB MED:射频识别标本追踪以提高解剖病
- [智慧医疗]顶级乳腺癌专家, 他改变了早期乳腺癌的治疗方
- [智慧医疗]AI医疗场景化业务:如何用AI技术做食管癌识别和
- [智慧医疗]npj Breast Cancer:超越人眼极限!AI识别出五种乳腺
- [智慧医疗]Clin Chem:高灵敏度心肌肌钙蛋白I可检测早期诊断
- [智慧医疗]预测分析在医疗领域的应用:识别高风险患者
- [智慧医疗]人工智能识别胸痛准确度远超医生:几乎100%正确
- [智慧医疗]MIT 人工智能系统助女性提早五年识别乳癌徵状
相关推荐:
网友评论: