突破性神经网络将为量子AI研究铺平道路
据悉,他们开发了一套在一台量子计算机上运行的单层人造神经网络(ANN)。这种基础ANN被称为感知器,它是更强大网络神经的基础组成部分。
而之前在量子系统上建立感知器的尝试涉及到的是将单个量子位元视为是网络中的神经元。这是一种繁琐而又复杂的方法,并且它也未能产生太多的可操行结果。
Tacchino及其团队则尝试了另一种不同的方法。据其介绍,他们采用的是一种类似于Rosenblatt感知器在量子计算机上的另一种设计,“我们通过在支持云量子计算的IBM量子处理器上部署二量子位版算法来实验性地展示这种方法的有效性。”
IBM的Q Experience计算机是一种五量子位云端访问的量子系统,对于那些没有数百万美元资金投入的实验室和接触世界级物理学家和工程师的人来说,它一直被作为是一种与量子计算互动的方式,不过通常情况下,它更多地会被认为是一种教育工具。
量子计算机面临的其中一个大问题是没有任何软件、程序或编码。要为一台违反物理定律的机器编写代码是非常困难的,但这并不是说就没有可能。
意大利团队就通过在IBM Q系统上运行感知器算法并利用合成神经网络进行图像分类任务证明了这一点。据悉,这是科学界第一次这样做。
现在它所能做的就是分辨出给定图像的三种基础模式中的其中一种。虽然这听起来好像也算不上什么大事,但当把它放在量子优势的背景下却又是另外一回事了。
研究人员表示,他们的算法比传统感知器模型更具有指数优势。这仅仅意味着在量子系统云端运行的神经网络可能比在传统系统上运行的神经网络更具有指数型的优势。人工智能和量子计算的结合带来的影响将会是超乎想象的。
相信未来的智能机器绝不会只是AI或量子--而是两者兼而有之。
时间:2018-11-22 13:12 来源: 转发量:次
声明:本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,不为其版权负责。如果您发现网站上有侵犯您的知识产权的作品,请与我们取得联系,我们会及时修改或删除。
相关文章:
相关推荐:
网友评论:
最新文章
热门文章