人工智能可以帮助我们以更有效的方式抵抗传染病
“如果未来几十年内某个东西会杀死超过1000万人的话,那么很大的可能它是一种具高度传染性的病毒,而不是战争。它会是微生物而不是导弹。 造成这种情况的一部分原因是因为我们在核威慑上投入了大量资金,而实际在遏制流行病系统的投入资金很少。” ——比尔·盖茨2015年3月的TED演讲片段
人类在整个历史里都一直在与传染病作斗争。尽管到目前为止已经开发了许多有效的药物,但新的病毒却不停地在挑战我们。COVID-19大流行使得我们有了一种紧迫感,我们要改善目前传染病的预防和治疗方法。幸运的是,时下的人工智能(AI)和数据科学方法可以帮助我们以更有效的方式抵抗传染病。
20世纪里有三大突破:消毒、免疫和抗生素,三大突破改善了人类健康,人类的平均预期寿命至少延长了20年。 在过去的100年里,人类对病毒发起的挑战比过去几千年的挑战还多。尽管我们已经取得了很多进步,但新的传染病仍在不断出现,其中的一些病导致了大爆发甚至流行病。
生物科技呈指数增长
2015年,一个名为“生物技术科学迅猛增长的机会和风险”的生物科技会议在剑桥大学举行。一些生物科技领域的专家在会上就生物科技对于建设或摧毁我们世界的威力进行了探讨,他们还讨论了如何利用创业机会而同时避免灾难性风险等问题。化学工程与生物科技学院的Cris Law教授、传染病信息学教授Derek Smith以及Deep Knowledge Ventures 创始人Dmitry Kaminskiy三位是会议的演讲者。他们得出了两个主要结论。他们的结论是,基础AI和数据科学应该用于优化预防医学的管理,而强势AI则应该用于新疫苗的开发。他们还提出警告,一定要特别注意防止病毒可能从实验室传播出来的失误以及要防止先进的生物危害技术落入恐怖分子之手。
生存风险研究中心(剑桥大学)
传染病大流行时,感染病毒的人数增加,因而增长速度也随之增加。科技和传染病大流行都呈指数发展,而病毒和微生物的流行源头却是以双倍指数发展。这些包括了自然病毒,但也可能包括用于武器化病毒。武器化病毒的一个例子是将流感+HIV病毒内置于蚊子,用于生物战。人工智能可以帮助消除这一不平衡关系,使生物制药商可以赶上大流行的发展速度。目前的技术已经可以减少大流行的威胁,即便不利用新一代AI系统都能取得好的进步。
“加拿大军方正在为未来12个月内可能多次出现的COVID19高峰做准备。”——加拿大武装部队乔纳森·万斯将军
个性化靶向免疫
目前可用的技术可以采用几种方法。一种方法是将数据科学技术应用于规模性的个性化疫苗接种。另一个方法是利用AI优化免疫的管理。将AI、大数据和小数据技术结合在一起,疫苗的分发就能够规模性地以更精致准确的方式进行。实现上可以是通过AI分析一些诸如遗传学之类的个人数据,预测每个个体对特定疫苗的风险和潜在敏感性。然后再利用AI设计出针对每个个体的经优化过的个性化疫苗。到这里就可以利用基于AI的个人概况优化免疫管理。所需的技术已经存在。AI可以用于分析个人数据,例如种族、年龄、性别、血型、体重、BMI、虚弱程度以及一些可能令个体面临某些病毒风险增加的历史状况。在获取了个体概况后,一些人由于自身存在某个脆弱性就可以收到针对特定病毒的疫苗建议。
各国/地区治疗效率排名。
COVID症状追踪程序
COVID症状追踪程序(https://covid.joinzoe.com)是由伦敦国王学院、盖斯和圣托马斯医院的医生和科学家与 健康科学公司ZOE Global Ltd共同开发的。 该应用程序可用于研究COVID-19的症状及跟踪COVID-19病毒的传播。这项研究的负责人是伦敦国王学院基因流行病学教授、TwinsUK主管Tim Spector教授。TwinsUK是英国一项基于15,000对双胞胎的科学研究,这项研究已经做了近30年了。该程序除了用于研究普通人群的症状外也在TwinsUK研究里用于了解5000名双胞胎的症状的发展。
这项研究的目的是帮助科学家更好地了解COVID-19。科学家利用这些数据可以了解COVID-19病毒在特定区域传播程度的快慢、确认高风险区域及通过更好地了解与健康状况相关的症状来确定谁的风险高一些。该应用程序使得研究人员有机会观察病症在不同风险群组里时间上的变化情况,还可以找到那些症状较轻患者的模式。如果今年晚些时候或明年第二次爆发COVID-19病毒,那么这些信息就会具有非常重要的意义。该应用程序前一阵在英国推出,已经有130万人在记录他们的症状,占英国人口的2%。该应用程序的开发人员正在计划为美国开发一个版本,美国版本很快就会发布。
现在正是发展先进的下一代研发技术和方法的大好时机。在这个关键时刻,我们应该积极使用深度技术及前沿科技应对我们面临的主要风险和挑战。我们可以先通过利用目前存在的AI技术改进疫苗和治疗方法,保护人类不受传染病的侵害。
时间:2020-04-16 23:11 来源:可思数据 转发量:次
声明:本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,不为其版权负责。如果您发现网站上有侵犯您的知识产权的作品,请与我们取得联系,我们会及时修改或删除。
相关文章:
相关推荐:
网友评论: