行业报告 AI展会 数据标注 标注供求
数据标注数据集
主页 > 机器视觉 正文

机器视觉的必备知识!要牢记!

视觉行业的初学者,甚至是做了1-2年的销售也许还会困惑这样的事情——在拿到检测要求后,不知道根据图纸上的公差,应该选用多少万像素的相机。同时还不明确为什么要三个类似的专有名词来描述同一个事情。 

这一期内容就是为大家详细介绍:分辨率,精度,公差的关系,从而指导选型。

分辨率(Resolution)

比如我要看的产品大小是30mm*10MM,使用200万像素(1600pixel*1200pixel)的相机。因为产品是长条形,为了把产品都放入到视野内,我们计算分辨率的时候要考虑长边对应。

精度(Accuracy)

精度的单位是mm。根据产品表面和照明状况的不同,我们可以通过放大图像观察辨别稳定像素的个数,从而得出精度。如果条件不允许实际测试观察,一般的规律是,如果使用正面打光,有效像素为1个,使用背光,有效像素为0.5个。 

这个例子我们取1 Pixel,得到精度为0.019mm约等于0.02mm。

机器视觉系统的定位精度如何计算?

 

假如是30万像素的摄像机,监控的面积为640x480mm,其精度是不是就是1mm了?

30W相机分辨率640*480 正常这样算:用最长的边除去监控面积最长的边即可,所以精度基本上是1mm,这个是理论值,如果你做测量或者表面划伤检测,肯定不准确,一个像素有可能无法凸显特征。    

 

公差(Tolerance)

 

一般情况下,精度和公差的对应关系如下:

对一个项目来讲,我们是先从图纸上读到公差的要求。然后再根据上述关系,反推得出我们需要多少像素的相机。我们准备了一个表格,输入视野,即可自动算出不同相机的精度矩阵,方便快速选型。

Field of View × 30mm

 

使用Heinxs Vision Detector测量时,首先要考虑的几大方面的有:相机、镜头、光源。选择要考虑的因素有很多,这里依据一个经手的项目介绍一下精度方面需要考虑的问题。项目要求:像素精度0.05mm、测量误差正负0.15mm。首先介绍一下相关的概念:

●像素精度:一个像素在真实世界代表的距离,即拍摄视野/分辨率。例如我所使用的Heinxs 500万相机,分辨率2592*2048,在视野中长的一边100mm,即可拍到100mm的物体,那么在这一方向的像素精度为100/2592mm约为0.0386mm。测量误差:使用算法测量的距离/长度与真实值的误差。

●亚像素精度:亚像素精度是指相邻两像素之间细分情况,输入值通常为二分之一,三分之一或四分之一。即每个像素将被分为更小的单元从而对这些更小的单元实施插值算法。例如,如果选择四分之一,就相当于每个像素在横向和纵向上都被当作四个像素来计算。实际测量或检测时需要考虑的还有很多,例如帧率、曝光、增益等。

Heinxs Vision Detector软件里使用标定和图像测量得到结果图如上。使用Heinxs Vision Detector软件可以轻松的进行图像测量。


微信公众号

声明:本站部分作品是由网友自主投稿和发布、编辑整理上传,对此类作品本站仅提供交流平台,转载的目的在于传递更多信息及用于网络分享,并不代表本站赞同其观点和对其真实性负责,不为其版权负责。如果您发现网站上有侵犯您的知识产权的作品,请与我们取得联系,我们会及时修改或删除。

网友评论:

发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片
SEM推广服务

Copyright©2005-2028 Sykv.com 可思数据 版权所有    京ICP备14056871号

关于我们   免责声明   广告合作   版权声明   联系我们   原创投稿   网站地图  

可思数据 数据标注

扫码入群
扫码关注

微信公众号

返回顶部